10 resultados para oily skin
em National Center for Biotechnology Information - NCBI
Resumo:
A recognized feature of psoriasis and other proliferative dermatoses is accumulation in the skin of the unusual arachidonic acid metabolite, 12R-hydroxyeicosatetraenoic acid (12R-HETE). This hydroxy fatty acid is opposite in chirality to the product of the well-known 12S-lipoxygenase and heretofore in mammals is known only as a product of cytochrome P450s. Here we provide mechanistic evidence for a lipoxygenase route to 12R-HETE in human psoriatic tissue and describe a 12R-lipoxygenase that can account for the biosynthesis. Initially we demonstrated retention of the C-12 deuterium of octadeuterated arachidonic acid in its conversion to 12R-HETE in incubations of psoriatic scales, indicating the end product is not formed by isomerization from 12S-H(P)ETE via the 12-keto derivative. Secondly, analysis of product formed from [10R-3H] and [10S-3H]-labeled arachidonic acids revealed that 12R-HETE synthesis is associated with stereospecific removal of the pro-R hydrogen from the 10-carbon of arachidonate. This result is compatible with 12R-lipoxygenase-catalyzed formation of 12R-HETE and not with a P450-catalyzed route to 12R-HETE in psoriatic scales. We cloned a lipoxygenase from human keratinocytes; the cDNA and deduced amino acid sequences share ≤50% identity to other human lipoxygenases. This enzyme, when expressed in Hela cells, oxygenates arachidonic acid to 12-HPETE, >98% 12R in configuration. The 12R-lipoxygenase cDNA is detectable by PCR in psoriatic scales and as a 2.5-kilobase mRNA by Northern analysis of keratinocytes. Identification of this enzyme extends the known distribution of R-lipoxygenases to humans and presents an additional target for potential therapeutic interventions in psoriasis.
Resumo:
P-glycoprotein (MDR-1) is a well-known transporter that mediates efflux of chemotherapeutic agents from the intracellular milieu and thereby contributes to drug resistance. MDR-1 also is expressed by nonmalignant cells, including leukocytes, but physiologic functions for MDR-1 are poorly defined. Using an initial screening assay that included >100 mAbs, we observed that neutralizing mAbs MRK16, UIC2, and 4E3 against MDR-1 specifically and potently blocked basal-to-apical transendothelial migration of mononuclear phagocytes, a process that may mimic their migration into lymphatic vessels. Antagonists of MDR-1 then were used in a model of authentic lymphatic clearance. In this model, antigen-presenting dendritic cells (DC) migrate out of explants of cultured human skin and into the culture medium via dermal lymphatic vessels. DC and T cells derived from skin expressed MDR-1 on their surfaces. Addition of anti-MDR-1 mAbs MRK16, UIC2, or the MDR-1 antagonist verapamil to skin explants at the onset of culture inhibited the appearance of DC, and accompanying T cells, in the culture medium by approximately 70%. Isotype-matched control mAbs against other DC molecules including CD18, CD31, and major histocompatibility complex I did not block. In the presence of MDR-1 antagonists, epidermal DC were retained in the epidermis, in contrast to control conditions. In summary, this work identifies a physiologic function for MDR-1 during the mobilization of DC and begins to elucidate how these critical antigen-presenting cells migrate from the periphery to lymph nodes to initiate T lymphocyte-mediated immunity.
Resumo:
Glycosylphosphatidylinositol (GPI)-anchored proteins are widely distributed on plasma membranes of eukaryotes. More than 50 GPI-anchored proteins have been shown to be spatiotemporally expressed in mice with a deficiency of GPI-anchor biosynthesis that causes embryonic lethality. Here, we examine the functional roles of GPI-anchored proteins in mouse skin using the Cre-loxP recombination system. We disrupted the Pig-a gene, an X-linked gene essential for GPI-anchor biosynthesis, in skin. The Cre-mediated Pig-a disruption occurred in skin at almost 100% efficiency in male mice bearing two identically orientated loxP sites within the Pig-a gene. Expression of GPI-anchored proteins was completely absent in the skin of these mice. The skin of such mutants looked wrinkled and more scaly than that of wild-type mice. Furthermore, histological examination of mutant mice showed that the epidermal horny layer was tightly packed and thickened. Electron microscopy showed that the intercellular space was narrow and there were many small vesicles embedded in the intercellular space that were not observed in equivalent wild-type mouse skin preparations. Mutant mice died within a few days after birth, suggesting that Pig-a function is essential for proper skin differentiation and maintenance.
Resumo:
In contrast to naive lymphocytes, memory/effector lymphocytes can access nonlymphoid effector sites and display restricted, often tissue-selective, migration behavior. The cutaneous lymphocyte-associated antigen (CLA) defines a subset of circulating memory T cells that selectively localize in cutaneous sites mediated in part by the interaction of CLA with its vascular ligand E-selectin. Here, we report the identification and characterization of a CC chemokine, cutaneous T cell-attracting chemokine (CTACK). Both human and mouse CTACK are detected only in skin by Southern and Northern blot analyses. Specifically, CTACK message is found in the mouse epidermis and in human keratinocytes, and anti-CTACK mAbs predominantly stain the epithelium. Finally, CTACK selectively attracts CLA+ memory T cells. Taken together, these results suggest an important role for CTACK in recruitment of CLA+ T cells to cutaneous sites. CTACK is predominantly expressed in the skin and selectively attracts a tissue-specific subpopulation of memory lymphocytes.
Resumo:
Exposing skin to UVB (280–320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase (Photosomes; Applied Genetics, Freeport, NY), which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosome treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320–400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function.
Resumo:
Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans.
Resumo:
Thymidine dinucleotide (pTpT) stimulates melanogenesis in mammalian pigment cells and intact skin, mimicking the effects of UV irradiation and UV-mimetic DNA damage. Here it is shown that, in addition to tanning, pTpT induces a second photoprotective response, enhanced repair of UV-induced DNA damage. This enhanced repair results in a 2-fold increase in expression of a UV-damaged chloramphenicol acetyltransferase expression vector transfected into pTpT-treated skin fibroblasts and keratinocytes, compared with diluent-treated cells. Direct measurement of thymine dimers and (6–4) photoproducts by immunoassay demonstrates faster repair of both of these UV-induced photoproducts in pTpT-treated fibroblasts. This enhanced repair capacity also improves cell survival and colony-forming ability after irradiation. These effects of pTpT are accomplished, at least in part, by the up-regulation of a set of genes involved in DNA repair (ERCC3 and GADD45) and cell cycle inhibition (SDI1). At least two of these genes (GADD45 and SDI1) are known to be transcriptionally regulated by the p53 tumor suppressor protein. Here we show that pTpT activates p53, leading to nuclear accumulation of this protein, and also increases the specific binding of this transcription factor to its DNA consensus sequence.
Resumo:
One of the current limitations of gene transfer protocols involving mammalian genomes is the lack of spatial and temporal control over the desired gene manipulation. Starting from a human keratin gene showing a complex regulation as a template, we identified regulatory sequences that confer inducible gene expression in a subpopulation of keratinocytes in stratified epithelia of adult transgenic mice. We used this cassette to produce transgenic mice with an inducible skin blistering phenotype mimicking a form of epidermolytic hyperkeratosis, a keratin gene disorder. Upon induction by topical application of a phorbol ester, the mutant keratin transgene product accumulates in the differentiating layers of epidermis, leading to keratinocyte lysis after application of mechanical trauma. This mouse model will allow for a better understanding of the complex relationship between keratin mutation, keratinocyte cytoarchitecture, and hypersensitivity to trauma. The development of an inducible expression vector showing an exquisite cellular specificity has important implications for manipulating genes in a spatially and temporally controlled fashion in transgenic mice, and for the design of gene therapy strategies using skin as a tissue source for the controlled delivery of foreign substances.
Resumo:
Ultraviolet-B (UVB) (290–320 nm) radiation-induced cyclobutane pyrimidine dimers within the DNA of epidermal cells are detrimental to human health by causing mutations and immunosuppressive effects that presumably contribute to photocarcinogenesis. Conventional photoprotection by sunscreens is exclusively prophylactic in nature and of no value once DNA damage has occurred. In this paper, we have therefore assessed whether it is possible to repair UVB radiation-induced DNA damage through topical application of the DNA-repair enzyme photolyase, derived from Anacystis nidulans, that specifically converts cyclobutane dimers into their original DNA structure after exposure to photoreactivating light. When a dose of UVB radiation sufficient to induce erythema was administered to the skin of healthy subjects, significant numbers of dimers were formed within epidermal cells. Topical application of photolyase-containing liposomes to UVB-irradiated skin and subsequent exposure to photoreactivating light decreased the number of UVB radiation-induced dimers by 40–45%. No reduction was observed if the liposomes were not filled with photolyase or if photoreactivating exposure preceded the application of filled liposomes. The UVB dose administered resulted in suppression of intercellular adhesion molecule-1 (ICAM-1), a molecule required for immunity and inflammatory events in the epidermis. In addition, in subjects hypersensitive to nickel sulfate, elicitation of the hypersensitivity reaction in irradiated skin areas was prevented. Photolyase-induced dimer repair completely prevented these UVB radiation-induced immunosuppressive effects as well as erythema and sunburn-cell formation. These studies demonstrate that topical application of photolyase is effective in dimer reversal and thereby leads to immunoprotection.