18 resultados para nutritional genomics
em National Center for Biotechnology Information - NCBI
Resumo:
Reconstructing the evolutionary history of Hox cluster origins will lead to insights into the developmental and evolutionary significance of Hox gene clusters in vertebrate phylogeny and to their role in the origins of various vertebrate body plans. We have isolated two Hox clusters from the horn shark, Heterodontus francisci. These have been sequenced and compared with one another and with other chordate Hox clusters. The results show that one of the horn shark clusters (HoxM) is orthologous to the mammalian HoxA cluster and shows a structural similarity to the amphioxus cluster, whereas the other shark cluster (HoxN) is orthologous to the mammalian HoxD cluster based on cluster organization and a comparison with noncoding and Hox gene-coding sequences. The persistence of an identifiable HoxA cluster over an 800-million-year divergence time demonstrates that the Hox gene clusters are highly integrated and structured genetic entities. The data presented herein identify many noncoding sequence motifs conserved over 800 million years that may function as genetic control motifs essential to the developmental process.
Resumo:
As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.
Resumo:
The 5′-untranslated region of hepatitis C virus (HCV) is highly conserved, folds into a complex secondary structure, and functions as an internal ribosome entry site (IRES) to initiate translation of HCV proteins. We have developed a selection system based on a randomized hairpin ribozyme gene library to identify cellular factors involved in HCV IRES function. A retroviral vector ribozyme library with randomized target recognition sequences was introduced into HeLa cells, stably expressing a bicistronic construct encoding the hygromycin B phosphotransferase gene and the herpes simplex virus thymidine kinase gene (HSV-tk). Translation of the HSV-tk gene was mediated by the HCV IRES. Cells expressing ribozymes that inhibit HCV IRES-mediated translation of HSV-tk were selected via their resistance to both ganciclovir and hygromycin B. Two ribozymes reproducibly conferred the ganciclovir-resistant phenotype and were shown to inhibit IRES-mediated translation of HCV core protein but did not inhibit cap-dependent protein translation or cell growth. The functional targets of these ribozymes were identified as the gamma subunits of human eukaryotic initiation factors 2B (eIF2Bγ) and 2 (eIF2γ), respectively. The involvement of eIF2Bγ and eIF2γ in HCV IRES-mediated translation was further validated by ribozymes directed against additional sites within the mRNAs of these genes. In addition to leading to the identification of cellular IRES cofactors, ribozymes obtained from this cellular selection system could be directly used to specifically inhibit HCV viral translation, thereby facilitating the development of new antiviral strategies for HCV infection.
Resumo:
The transcription of fatty acid synthase (FAS), a central enzyme in de novo lipogenesis, is dramatically induced by fasting/refeeding and insulin. We reported that upstream stimulatory factor binding to the −65 E-box is required for induction of the FAS transcription by insulin in 3T3-L1 adipocytes. On the other hand, we recently found that two upstream 5′ regions are required for induction in vivo by fasting/refeeding and insulin; one at −278 to −131 albeit at a low level, and the other at −444 to −278 with an E-box at −332 where upstream stimulatory factor functions for maximal induction. Here, we generated double transgenic mice carrying the chloramphenicol acetyltransferase reporter driven by the various 5′ deletions of the FAS promoter region and a truncated active form of the sterol regulatory element (SRE) binding protein (SREBP)-1a. We found that SREBP participates in the nutritional regulation of the FAS promoter and that the region between −278 and −131 bp is required for SREBP function. We demonstrate that SREBP binds the −150 canonical SRE present between −278 and −131, and SREBP can function through the −150 SRE in cultured cells. These in vivo and in vitro results indicate that SREBP is involved in the nutritional induction of the FAS promoter via the −278/−131 region and that the −150 SRE is the target sequence.
Resumo:
The target of rapamycin protein (TOR) is a highly conserved ataxia telangiectasia-related protein kinase essential for cell growth. Emerging evidence indicates that TOR signaling is highly complex and is involved in a variety of cellular processes. To understand its general functions, we took a chemical genomics approach to explore the genetic interaction between TOR and other yeast genes on a genomic scale. In this study, the rapamycin sensitivity of individual deletion mutants generated by the Saccharomyces Genome Deletion Project was systematically measured. Our results provide a global view of the rapamycin-sensitive functions of TOR. In contrast to conventional genetic analysis, this approach offers a simple and thorough analysis of genetic interaction on a genomic scale and measures genetic interaction at different possible levels. It can be used to study the functions of other drug targets and to identify novel protein components of a conserved core biological process such as DNA damage checkpoint/repair that is interfered with by a cell-permeable chemical compound.
Resumo:
Many small bacterial, archaebacterial, and eukaryotic genomes have been sequenced, and the larger eukaryotic genomes are predicted to be completely sequenced within the next decade. In all genomes sequenced to date, a large portion of these organisms’ predicted protein coding regions encode polypeptides of unknown biochemical, biophysical, and/or cellular functions. Three-dimensional structures of these proteins may suggest biochemical or biophysical functions. Here we report the crystal structure of one such protein, MJ0577, from a hyperthermophile, Methanococcus jannaschii, at 1.7-Å resolution. The structure contains a bound ATP, suggesting MJ0577 is an ATPase or an ATP-mediated molecular switch, which we confirm by biochemical experiments. Furthermore, the structure reveals different ATP binding motifs that are shared among many homologous hypothetical proteins in this family. This result indicates that structure-based assignment of molecular function is a viable approach for the large-scale biochemical assignment of proteins and for discovering new motifs, a basic premise of structural genomics.
Resumo:
In order to support the structural genomic initiatives, both by rapidly classifying newly determined structures and by suggesting suitable targets for structure determination, we have recently developed several new protocols for classifying structures in the CATH domain database (http://www.biochem.ucl.ac.uk/bsm/cath). These aim to increase the speed of classification of new structures using fast algorithms for structure comparison (GRATH) and to improve the sensitivity in recognising distant structural relatives by incorporating sequence information from relatives in the genomes (DomainFinder). In order to ensure the integrity of the database given the expected increase in data, the CATH Protein Family Database (CATH-PFDB), which currently includes 25 320 structural domains and a further 160 000 sequence relatives has now been installed in a relational ORACLE database. This was essential for developing more rigorous validation procedures and for allowing efficient querying of the database, particularly for genome analysis. The associated Dictionary of Homologous Superfamilies [Bray,J.E., Todd,A.E., Pearl,F.M.G., Thornton,J.M. and Orengo,C.A. (2000) Protein Eng., 13, 153–165], which provides multiple structural alignments and functional information to assist in assigning new relatives, has also been expanded recently and now includes information for 903 homologous superfamilies. In order to improve coverage of known structures, preliminary classification levels are now provided for new structures at interim stages in the classification protocol. Since a large proportion of new structures can be rapidly classified using profile-based sequence analysis [e.g. PSI-BLAST: Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J. (1997) Nucleic Acids Res., 25, 3389–3402], this provides preliminary classification for easily recognisable homologues, which in the latest release of CATH (version 1.7) represented nearly three-quarters of the non-identical structures.
Resumo:
The PlantsP database is a curated database that combines information derived from sequences with experimental functional genomics information. PlantsP focuses on plant protein kinases and protein phosphatases. The database will specifically provide a resource for information on a collection of T-DNA insertion mutants (knockouts) in each protein kinase and phosphatase in Arabidopsis thaliana. PlantsP also provides a curated view of each protein that includes a comprehensive annotation of functionally related sequence motifs, sequence family definitions, alignments and phylogenetic trees, and descriptive information drawn directly from the literature. PlantsP is available at http://PlantsP.sdsc.edu.
Resumo:
Helicobacter pylori is a Gram-negative bacterial pathogen with a small genome of 1.64–1.67 Mb. More than 20 putative DNA restriction-modification (R-M) systems, comprising more than 4% of the total genome, have been identified in the two completely sequenced H. pylori strains, 26695 and J99, based on sequence similarities. In this study, we have investigated the biochemical activities of 14 Type II R-M systems in H. pylori 26695. Less than 30% of the Type II R-M systems in 26695 are fully functional, similar to the results obtained from strain J99. Although nearly 90% of the R-M genes are shared by the two H. pylori strains, different sets of these R-M genes are functionally active in each strain. Interestingly, all strain-specific R-M genes are active, whereas most shared genes are inactive. This agrees with the notion that strain-specific genes have been acquired more recently through horizontal transfer from other bacteria and selected for function. Thus, they are less likely to be impaired by random mutations. Our results also show that H. pylori has extremely diversified R-M systems in different strains, and that the diversity may be maintained by constantly acquiring new R-M systems and by inactivating and deleting the old ones.
Resumo:
In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of “Complexity Theory” think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal, and ecosystem biology, including all living organisms.
Resumo:
Complete genome sequences are providing a framework to allow the investigation of biological processes by the use of comprehensive approaches. Genome analysis also is having a dramatic impact on medicine through its identification of genes and mutations involved in disease and the elucidation of entire microbial gene sets. Studies of the sequences of model organisms, such as that of the nematode worm Caenorhabditis elegans, are providing extraordinary insights into development and differentiation that aid the study of these processes in humans. The field of functional genomics seeks to devise and apply technologies that take advantage of the growing body of sequence information to analyze the full complement of genes and proteins encoded by an organism.
Resumo:
Comparative genomics offers unparalleled opportunities to integrate historically distinct disciplines, to link disparate biological kingdoms, and to bridge basic and applied science. Cross-species, cross-genera, and cross-kingdom comparisons are proving key to understanding how genes are structured, how gene structure relates to gene function, and how changes in DNA have given rise to the biological diversity on the planet. The application of genomics to the study of crop species offers special opportunities for innovative approaches for combining sequence information with the vast reservoirs of historical information associated with crops and their evolution. The grasses provide a particularly well developed system for the development of tools to facilitate comparative genetic interpretation among members of a diverse and evolutionarily successful family. Rice provides advantages for genomic sequencing because of its small genome and its diploid nature, whereas each of the other grasses provides complementary genetic information that will help extract meaning from the sequence data. Because of the importance of the cereals to the human food chain, developments in this area can lead directly to opportunities for improving the health and productivity of our food systems and for promoting the sustainable use of natural resources.