4 resultados para nutrient limitation

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microorganisms must sense their environment and rapidly tune their metabolism to ambient conditions to efficiently use available resources. We have identified a gene encoding a response regulator, NblR, that complements a cyanobacterial mutant unable to degrade its light-harvesting complex (phycobilisome), in response to nutrient deprivation. Cells of the nblR mutant (i) have more phycobilisomes than wild-type cells during nutrient-replete growth, (ii) do not degrade phycobilisomes during sulfur, nitrogen, or phosphorus limitation, (iii) cannot properly modulate the phycobilisome level during exposure to high light, and (iv) die rapidly when starved for either sulfur or nitrogen, or when exposed to high light. Apart from regulation of phycobilisome degradation, NblR modulates additional functions critical for cell survival during nutrient-limited and high-light conditions. NblR does not appear to be involved in acclimation responses that occur only during a specific nutrient limitation. In contrast, it controls at least some of the general acclimation responses; those that occur during any of a number of different stress conditions. NblR plays a pivotal role in integrating different environmental signals that link the metabolism of the cell to light harvesting capabilities and the activities of the photosynthetic apparatus; this modulation is critical for cell survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term exposure of plants to elevated partial pressures of CO2 (pCO2) often depresses photosynthetic capacity. The mechanistic basis for this photosynthetic acclimation may involve accumulation of carbohydrate and may be promoted by nutrient limitation. However, our current knowledge is inadequate for making reliable predictions concerning the onset and extent of acclimation. Many studies have sought to investigate the effects of N supply but the methodologies used generally do not allow separation of the direct effects of limited N availability from those caused by a N dilution effect due to accelerated growth at elevated pCO2. To dissociate these interactions, wheat (Triticum aestivum L.) was grown hydroponically and N was added in direct proportion to plant growth. Photosynthesis did not acclimate to elevated pCO2 even when growth was restricted by a low-N relative addition rate. Ribulose-1, 5-bisphosphate carboxylase/oxygenase activity and quantity were maintained, there was no evidence for triose phosphate limitation of photosynthesis, and tissue N content remained within the range recorded for healthy wheat plants. In contrast, wheat grown in sand culture with N supplied at a fixed concentration suffered photosynthetic acclimation at elevated pCO2 in a low-N treatment. This was accompanied by a significant reduction in the quantity of active ribulose-1, 5-bisphosphate carboxylase/oxygenase and leaf N content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudohyphal differentiation in Saccharomyces cerevisiae was first described as a response of diploid cells to nitrogen limitation. Here we report that haploid and diploid starch-degrading S. cerevisiae strains were able to switch from a yeast form to a filamentous pseudohyphal form in response to carbon limitation in the presence of an ample supply of nitrogen. Two genes, MSS10 and MUC1, were cloned and shown to be involved in pseudohyphal differentiation and invasive growth. The deletion of MSS10 resulted in extremely reduced amounts of pseudohyphal differentiation and invasive growth, whereas the deletion of MUC1 abolished pseudohyphal differentiation and invasive growth completely. Mss10 appears to be a transcriptional activator that responds to nutrient limitation and coregulates the expression of MUC1 and the STA1-3 glucoamylase genes, which are involved in starch degradation. MUC1 encodes a 1367-amino acid protein, containing several serine/threonine-rich repeats. Muc1 is a putative integral membrane-bound protein, similar to mammalian mucin-like membrane proteins that have been implicated to play a role in the ability of cancer cells to invade other tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The light-saturated rate of photosynthetic O2 evolution in Chlamydomonas reinhardtii declined by approximately 75% on a per-cell basis after 4 d of P starvation or 1 d of S starvation. Quantitation of the partial reactions of photosynthetic electron transport demonstrated that the light-saturated rate of photosystem (PS) I activity was unaffected by P or S limitation, whereas light-saturated PSII activity was reduced by more than 50%. This decline in PSII activity correlated with a decline in both the maximal quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers (PSII centers capable of performing a charge separation but unable to reduce the plastoquinone pool). In addition to a decline in the light-saturated rate of O2 evolution, there was reduced efficiency of excitation energy transfer to the reaction centers of PSII (because of dissipation of absorbed light energy as heat and because of a transition to state 2). These findings establish a common suite of alterations in photosynthetic electron transport that results in decreased linear electron flow when C. reinhardtii is limited for either P or S. It was interesting that the decline in the maximum quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers were regulated specifically during S-limited growth by the SacI gene product, which was previously shown to be critical for the acclimation of C. reinhardtii to S limitation (J.P. Davies, F.H. Yildiz, and A.R. Grossman [1996] EMBO J 15: 2150–2159).