6 resultados para nitroxyl
em National Center for Biotechnology Information - NCBI
Resumo:
Recent experimental evidence suggests that reactive nitrogen oxide species can contribute significantly to postischemic myocardial injury. The aim of the present study was to evaluate the role of two reactive nitrogen oxide species, nitroxyl (NO−) and nitric oxide (NO⋅), in myocardial ischemia and reperfusion injury. Rabbits were subjected to 45 min of regional myocardial ischemia followed by 180 min of reperfusion. Vehicle (0.9% NaCl), 1 μmol/kg S-nitrosoglutathione (GSNO) (an NO⋅ donor), or 3 μmol/kg Angeli’s salt (AS) (a source of NO−) were given i.v. 5 min before reperfusion. Treatment with GSNO markedly attenuated reperfusion injury, as evidenced by improved cardiac function, decreased plasma creatine kinase activity, reduced necrotic size, and decreased myocardial myeloperoxidase activity. In contrast, the administration of AS at a hemodynamically equieffective dose not only failed to attenuate but, rather, aggravated reperfusion injury, indicated by an increased left ventricular end diastolic pressure, myocardial creatine kinase release and necrotic size. Decomposed AS was without effect. Co-administration of AS with ferricyanide, a one-electron oxidant that converts NO− to NO⋅, completely blocked the injurious effects of AS and exerted significant cardioprotective effects similar to those of GSNO. These results demonstrate that, although NO⋅ is protective, NO− increases the tissue damage that occurs during ischemia/reperfusion and suggest that formation of nitroxyl may contribute to postischemic myocardial injury.
Resumo:
In a recent article [Khan, A. U., Kovacic, D., Kolbanovsky, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], the authors claimed that ONOO−, after protonation to ONOOH, decomposes into 1HNO and 1O2 according to a spin-conserved unimolecular mechanism. This claim was based partially on their observation that nitrosylhemoglobin is formed via the reaction of peroxynitrite with methemoglobin at neutral pH. However, thermochemical considerations show that the yields of 1O2 and 1HNO are about 23 orders of magnitude lower than those of ⋅NO2 and ⋅OH, which are formed via the homolysis of ONOOH. We also show that methemoglobin does not form with peroxynitrite any spectrally detectable product, but with contaminations of nitrite and H2O2 present in the peroxynitrite sample. Thus, there is no need to modify the present view of the mechanism of ONOOH decomposition, according to which initial homolysis into a radical pair, [ONO⋅ ⋅OH]cage, is followed by the diffusion of about 30% of the radicals out of the cage, while the rest recombines to nitric acid in the solvent cage.
Resumo:
According to Khan et al. [Khan, A. U., Kovacic, D., Kolbanovskiy, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], peroxynitrite (ONOO−) decomposes after protonation to singlet oxygen (1ΔgO2) and singlet oxonitrate (nitroxyl, 1NO−) in high yield. They claimed to have observed nitrosyl hemoglobin from the reaction of NO− with methemoglobin; however, contamination with hydrogen peroxide gave rise to ferryl hemoglobin, the spectrum of which was mistakenly assigned to nitrosyl hemoglobin. We have carried out UV–visible and EPR experiments with methemoglobin and hydrogen peroxide-free peroxynitrite and find that no NO− is formed. With this peroxynitrite preparation, no light emission from singlet oxygen at 1270 nm is observed, nor is singlet oxygen chemically trapped; however, singlet oxygen was trapped when hydrogen peroxide was also present, as previously described [Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K. & Sies, H. (1994) FEBS Lett. 355, 287–289]. Quantum mechanical and thermodynamic calculations show that formation of the postulated intermediate, a cyclic form of peroxynitrous acid (trioxazetidine), and the products 1NO− and 1ΔgO2 requires Gibbs energies of ca. +415 kJ⋅mol−1 and ca. +180 kJ⋅mol−1, respectively. Our results show that the results of Khan et al. are best explained by interference from contaminating hydrogen peroxide left from the synthesis of peroxynitrite.
Resumo:
Although nitric oxide synthase (NOS) is widely considered as the major source of NO in biological cells and tissues, direct evidence demonstrating NO formation from the purified enzyme has been lacking. It was recently reported that NOS does not synthesize NO, but rather generates nitroxyl anion (NO−) that is subsequently converted to NO by superoxide dismutase (SOD). To determine if NOS synthesizes NO, electron paramagnetic resonance (EPR) spectroscopy was applied to directly measure NO formation from purified neuronal NOS. In the presence of the NO trap Fe2+-N-methyl-d-glucamine dithiocarbamate, NO gives rise to characteristic EPR signals with g = 2.04 and aN = 12.7 G, whereas NO− is undetectable. In the presence of l-arginine (l-Arg) and cofactors, NOS generated prominent NO signals. This NO generation did not require SOD, and it was blocked by the specific NOS inhibitor N-nitro-l-arginine methyl ester. Isotope-labeling experiments with l-[15N]Arg further demonstrated that NOS-catalyzed NO arose from the guanidino nitrogen of l-Arg. Measurement of the time course of NO formation demonstrated that it paralleled that of l-citrulline. The conditions used in the prior study were shown to result in potent superoxide generation, and this may explain the failure to measure NO formation in the absence of SOD. These experiments provide unequivocal evidence that NOS does directly synthesize NO from l-Arg.
Resumo:
The nitric-oxide synthase (NOS; EC 1.14.13.39) reaction is formulated as a partially tetrahydrobiopterin (H4Bip)-dependent 5-electron oxidation of a terminal guanidino nitrogen of l-arginine (Arg) associated with stoichiometric consumption of dioxygen (O2) and 1.5 mol of NADPH to form l-citrulline (Cit) and nitric oxide (·NO). Analysis of NOS activity has relied largely on indirect methods such as quantification of nitrite/nitrate or the coproduct Cit; we therefore sought to directly quantify ·NO formation from purified NOS. However, by two independent methods, NOS did not yield detectable ·NO unless superoxide dismutase (SOD; EC 1.15.1.1) was present. In the presence of H4Bip, internal ·NO standards were only partially recovered and the dismutation of superoxide (O2⨪), which otherwise scavenges ·NO to yield ONOO−, was a plausible mechanism of action of SOD. Under these conditions, a reaction between NADPH and ONOO− resulted in considerable overestimation of enzymatic NADPH consumption. SOD lowered the NADPH:Cit stoichiometry to 0.8–1.1, suggesting either that additional reducing equivalents besides NADPH are required to explain Arg oxidation to ·NO or that ·NO was not primarily formed. The latter was supported by an additional set of experiments in the absence of H4Bip. Here, recovery of internal ·NO standards was unaffected. Thus, a second activity of SOD, the conversion of nitroxyl (NO−) to ·NO, was a more likely mechanism of action of SOD. Detection of NOS-derived nitrous oxide (N2O) and hydroxylamine (NH2OH), which cannot arise from ·NO decomposition, was consistent with formation of an ·NO precursor molecule such as NO−. When, in the presence of SOD, glutathione was added, S-nitrosoglutathione was detected. Our results indicate that ·NO is not the primary reaction product of NOS-catalyzed Arg turnover and an alternative reaction mechanism and stoichiometry have to be taken into account.
Resumo:
The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pKa of HNO is predicted to be 7.2 ± 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO− affects the rates of acid-base chemistry of the HNO/NO− couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (Keq = 6.9 × 10−5). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives.