3 resultados para nickel foam

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the crystal structures of the copper and nickel complexes of RNase A. The overall topology of these two complexes is similar to that of other RNase A structures. However, there are significant differences in the mode of binding of copper and nickel. There are two copper ions per molecule of the protein, but there is only one nickel ion per molecule of the protein. Significant changes occur in the interprotein interactions as a result of differences in the coordinating groups at the common binding site around His-105. Consequently, the copper- and nickel-ion-bound dimers of RNase A act as nucleation sites for generating different crystal lattices for the two complexes. A second copper ion is present at an active site residue His-119 for which all the ligands are from one molecule of the protein. At this second site, His-119 adopts an inactive conformation (B) induced by the copper. We have identified a novel copper binding motif involving the α-amino group and the N-terminal residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of nickel-containing chlorins (acyl tunichlorins) has been isolated from the Caribbean tunicate Trididemnum solidum. The structures of 28 of these nickel (II) hydroporphyrins were elucidated using mass spectrometry, one- and two-dimensional NMR spectroscopy, and chemical degradation/derivatization. Unique structural features of these compounds include the diversity of aliphatic side chains, which are derived from C14:0 to C22:6 fatty acids, and their location at an unprecedented position at C-2a on the hydroporphyrin nucleus. No chlorins with ester-linked acyl side chains at C-2a have been reported previously. Although the exact biological role that these compounds play in T. solidum remains unknown, acyl tunichlorins represent the only nickel-containing chlorins to be isolated from a living system and are the C-2a acyl derivatives of tunichlorin, a nickel chlorin reported by this laboratory in 1988.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression.