2 resultados para new childhood studies
em National Center for Biotechnology Information - NCBI
Resumo:
The PRNP polymorphic (methionine/valine) codon 129 genotype influences the phenotypic features of transmissible spongiform encephalopathy. All tested cases of new variant Creutzfeldt–Jakob disease (nvCJD) have been homozygous for methionine, and it is conjectural whether different genotypes, if they appear, might have distinctive phenotypes and implications for the future “epidemic curve” of nvCJD. Genotype-phenotype studies of kuru, the only other orally transmitted transmissible spongiform encephalopathy, might be instructive in predicting the answers to these questions. We therefore extracted DNA from blood clots or sera from 92 kuru patients, and analyzed their codon 129 PRNP genotypes with respect to the age at onset and duration of illness and, in nine cases, to detailed clinical and neuropathology data. Homozygosity at codon 129 (particularly for methionine) was associated with an earlier age at onset and a shorter duration of illness than was heterozygosity, but other clinical characteristics were similar for all genotypes. In the nine neuropathologically examined cases, the presence of histologically recognizable plaques was limited to cases carrying at least one methionine allele (three homozygotes and one heterozygote). If nvCJD behaves like kuru, future cases (with longer incubation periods) may begin to occur in older individuals with heterozygous codon 129 genotypes and signal a maturing evolution of the nvCJD “epidemic.” The clinical phenotype of such cases should be similar to that of homozygous cases, but may have less (or at least less readily identified) amyloid plaque formation.
Resumo:
Despite the biological and medical importance of signal transduction via Ras proteins and despite considerable kinetic and structural studies of wild-type and mutant Ras proteins, the mechanism of Ras-catalyzed GTP hydrolysis remains controversial. We take a different approach to this problem: the uncatalyzed hydrolysis of GTP is analyzed, and the understanding derived is applied to the Ras-catalyzed reaction. Evaluation of previous mechanistic proposals from this chemical perspective suggests that proton abstraction from the attacking water by a general base and stabilization of charge development on the gamma-phosphoryl oxygen atoms would not be catalytic. Rather, this analysis focuses attention on the GDP leaving group, including the beta-gamma bridge oxygen of GTP, the atom that undergoes the largest change in charge in going from the ground state to the transition state. This leads to a new catalytic proposal in which a hydrogen bond from the backbone amide of Gly-13 to this bridge oxygen is strengthened in the transition state relative to the ground state, within an active site that provides a template complementary to the transition state. Strengthened transition state interactions of the active site lysine, Lys-16, with the beta-nonbridging phosphoryl oxygens and a network of interactions that positions the nucleophilic water molecule and gamma-phosphoryl group with respect to one another may also contribute to catalysis. It is speculated that a significant fraction of the GAP-activated GTPase activity of Ras arises from an additional interaction of the beta-gamma bridge oxygen with an Arg side chain that is provided in trans by GAP. The conclusions for Ras and related G proteins are expected to apply more widely to other enzymes that catalyze phosphoryl (-PO(3)2-) transfer, including kinases and phosphatases.