3 resultados para neurosecretion
em National Center for Biotechnology Information - NCBI
Resumo:
Synaptotagmins (Syts) are a family of vesicle proteins that have been implicated in both regulated neurosecretion and general membrane trafficking. Calcium-dependent interactions mediated through their C2 domains are proposed to contribute to the mechanism by which Syts trigger calcium-dependent neurotransmitter release. Syt IV is a novel member of the Syt family that is induced by cell depolarization and has a rapid rate of synthesis and a short half-life. Moreover, the C2A domain of Syt IV does not bind calcium. We have examined the biochemical and functional properties of the C2 domains of Syt IV. Consistent with its non–calcium binding properties, the C2A domain of Syt IV binds syntaxin isoforms in a calcium-independent manner. In neuroendocrine pheochromocytoma (PC12) cells, Syt IV colocalizes with Syt I in the tips of the neurites. Microinjection of the C2A domain reveals that calcium-independent interactions mediated through this domain of Syt IV inhibit calcium-mediated neurotransmitter release from PC12 cells. Conversely, the C2B domain of Syt IV contains calcium binding properties, which permit homo-oligomerization as well as hetero-oligomerization with Syt I. Our observation that different combinatorial interactions exist between Syt and syntaxin isoforms, coupled with the calcium stimulated hetero-oligomerization of Syt isoforms, suggests that the secretory machinery contains a vast repertoire of biochemical properties for sensing calcium and regulating neurotransmitter release accordingly.
Resumo:
We have investigated the process leading to differentiation of PC12 cells. This process is known to include extension of neurites and changes in the expression of subsets of proteins involved in cytoskeletal rearrangements or in neurosecretion. To this aim, we have studied a PC12 clone (trk-PC12) stably transfected with the nerve growth factor receptor TrkA. These cells are able to undergo both spontaneous and neurotrophin-induced morphological differentiation. However, both undifferentiated and nerve growth factor-differentiated trk-PC12 cells appear to be completely defective in the expression of proteins of the secretory apparatus, including proteins of synaptic vesicles and large dense-core granules, neurotransmitter transporters, and neurotransmitter-synthesizing enzymes. These results indicate that neurite extension can occur independently of the presence of the neurosecretory machinery, including the proteins that constitute the fusion machine, suggesting the existence of differential activation pathways for the two processes during neuronal differentiation. These findings have been confirmed in independent clones obtained from PC12-27, a previously characterized PC12 variant clone globally incompetent for regulated secretion. In contrast, the integrity of the Rab cycle appears to be necessary for neurite extension, because antisense oligonucleotides against the neurospecific isoform of Rab-guanosine diphosphate-dissociation inhibitor significantly interfere with process formation.
Resumo:
Hippocampal neurons maintained in primary culture recycle synaptic vesicles and express functional glutamate receptors since early stages of neuronal development. By analyzing glutamate-induced cytosolic calcium changes to sense presynaptically released neurotransmitter, we demonstrate that the ability of neurons to release glutamate in the extracellular space is temporally coincident with the property of synaptic vesicles to undergo exocytotic-endocytotic recycling. Neuronal differentiation and maturation of synaptic contacts coincide with a change in the subtype of calcium channels primarily involved in controlling neurosecretion. Whereas omega-agatoxin IVA-sensitive channels play a role in controlling neurotransmitter secretion at all stages of neuronal differentiation, omega-conotoxin GVIA-sensitive channels are primarily involved in mediating glutamate release at early developmental stages only.