4 resultados para natural protected areas
em National Center for Biotechnology Information - NCBI
Resumo:
Earlier extracellular recordings during natural sleep have shown that, during slow-wave sleep (SWS), neocortical neurons display long-lasting periods of silence, whereas they are tonically active and discharge at higher rates during waking and sleep with rapid eye movements (REMs). We analyzed the nature of long-lasting periods of neuronal silence in SWS and the changes in firing rates related to ocular movements during REM sleep and waking using intracellular recordings from electrophysiologically identified neocortical neurons in nonanesthetized and nonparalyzed cats. We found that the silent periods during SWS are associated with neuronal hyperpolarizations, which are due to a mixture of K+ currents and disfacilitation processes. Conventional fast-spiking neurons (presumably local inhibitory interneurons) increased their firing rates during REMs and eye movements in waking. During REMs, the firing rates of regular-spiking neurons from associative areas decreased and intracellular traces revealed numerous, short-lasting, low-amplitude inhibitory postsynaptic potentials (IPSPs), that were reversed after intracellular chloride infusion. In awake cats, regular-spiking neurons could either increase or decrease their firing rates during eye movements. The short-lasting IPSPs associated with eye movements were still present in waking; they preceded the spikes and affected their timing. We propose that there are two different forms of firing rate control: disfacilitation induces long-lasting periods of silence that occur spontaneously during SWS, whereas active inhibition, consisting of low-amplitude, short-lasting IPSPs, is prevalent during REMs and precisely controls the timing of action potentials in waking.
Resumo:
This paper surveys some of the fundamental problems in natural language (NL) understanding (syntax, semantics, pragmatics, and discourse) and the current approaches to solving them. Some recent developments in NL processing include increased emphasis on corpus-based rather than example- or intuition-based work, attempts to measure the coverage and effectiveness of NL systems, dealing with discourse and dialogue phenomena, and attempts to use both analytic and stochastic knowledge. Critical areas for the future include grammars that are appropriate to processing large amounts of real language; automatic (or at least semi-automatic) methods for deriving models of syntax, semantics, and pragmatics; self-adapting systems; and integration with speech processing. Of particular importance are techniques that can be tuned to such requirements as full versus partial understanding and spoken language versus text. Portability (the ease with which one can configure an NL system for a particular application) is one of the largest barriers to application of this technology.
Resumo:
The field of natural language processing (NLP) has seen a dramatic shift in both research direction and methodology in the past several years. In the past, most work in computational linguistics tended to focus on purely symbolic methods. Recently, more and more work is shifting toward hybrid methods that combine new empirical corpus-based methods, including the use of probabilistic and information-theoretic techniques, with traditional symbolic methods. This work is made possible by the recent availability of linguistic databases that add rich linguistic annotation to corpora of natural language text. Already, these methods have led to a dramatic improvement in the performance of a variety of NLP systems with similar improvement likely in the coming years. This paper focuses on these trends, surveying in particular three areas of recent progress: part-of-speech tagging, stochastic parsing, and lexical semantics.
Resumo:
Trypanosomes are protozoan parasites of medical and veterinary importance. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense infect humans, causing African sleeping sickness. However, Trypanosoma brucei brucei can only infect animals, causing the disease Nagana in cattle. Man is protected from this subspecies of trypanosomes by a toxic subtype of high density lipoproteins (HDLs) called the trypanosome lytic factor (TLF). The toxic molecule in TLF is believed to be the haptoglobin-related protein that when bound to hemoglobin kills the trypanosome via oxidative damage initiated by its peroxidase activity. The amount of lytic activity in serum varies widely between different individuals with up to a 60-fold difference in activity. In addition, an increase in the total amount of lytic activity occurs during the purification of TLF, suggesting that an inhibitor of TLF (ITLF) exists in human serum. We now show that the individual variation in trypanosome lytic activity in serum correlates to variations in the amount of ITLF. Immunoblots of ITLF probed with antiserum against haptoglobin recognize a 120-kDa protein, indicating that haptoglobin is present in partially purified ITLF. Haptoglobin involvement is further shown in that it inhibits TLF in a manner similar to ITLF. Using an anti-haptoglobin column to remove haptoglobin from ITLF, we show that the loss of haptoglobin coincides with the loss of inhibitor activity. Addition of purified haptoglobin restores inhibitor activity. This indicates that haptoglobin is the molecule responsible for inhibition and therefore causing the individual variation in serum lytic activity.