2 resultados para native copper

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytokinin group of plant hormones regulates aspects of plant growth and development, including the release of lateral buds from apical dominance and the delay of senescence. In this work the native promoter of a cytokinin synthase gene (ipt) was removed and replaced with a Cu-controllable promoter. Tobacco (Nicotiana tabacum L. cv tabacum) transformed with this Cu-inducible ipt gene (Cu-ipt) was morphologically identical to controls under noninductive conditions in almost all lines produced. However, three lines grew in an altered state, which is indicative of cytokinin overproduction and was confirmed by a full cytokinin analysis of one of these lines. The in vitro treatment of morphologically normal Cu-ipt transformants with Cu2+ resulted in delayed leaf senescence and an increase in cytokinin concentration in the one line analyzed. In vivo, inductive conditions resulted in a significant release of lateral buds from apical dominance. The morphological changes seen during these experiments may reflect the spatial aspect of control exerted by this gene expression system, namely expression from the root tissue only. These results confirmed that endogenous cytokinin concentrations in tobacco transformants can be temporally and spatially controlled by the induction of ipt gene expression through the Cu-controllable gene-expression system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protein analog of a purple copper center has been constructed from a recombinant blue copper protein (Pseudomonas aeruginosa azurin) by replacing the loop containing the three ligands to the blue copper center with the corresponding loop of the CuA center in cytochrome c oxidase (COX) from Paracoccus denitrificans. The electronic absorption in the UV and visible region (UV-vis) and electron paramagnetic resonance (EPR) spectra of this analog are remarkably similar to those of the native CuA center in COX from Paracoccus denitrificans. The above spectra can be obtained upon addition of a mixture of Cu2+ and Cu+. Addition of Cu2+ only results in a UV-vis spectrum consisting of absorptions from both a purple copper center and a blue copper center. This spectrum can be converted to the spectrum of a pure purple copper by a prolonged incubation in the air, or by addition of excess ascorbate. The azurin mutant reported here is an example of an engineered purple copper center with the A480/A530 ratio greater than 1 and with no detectable hyperfines, similar to those of the CuA sites in COX of bovine heart and of Paracoccus denitrificans.