2 resultados para mucosa intestinal

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

pS2 is a member of the trefoil peptide family, all of which are overexpressed at sites of gastrointestinal injury. We hypothesized that they are important in stimulating mucosal repair. To test this idea, we have produced a transgenic mice strain that expresses human pS2 (hpS2) specifically within the jejunum and examined the effect of this overexpression on proliferation and susceptibility to indomethacin-induced damage. A transgenic mouse was produced by microinjecting fertilized oocytes with a 1.7-kb construct consisting of rat intestinal fatty acid binding protein promoter (positions -1178 to +28) linked to full-length (490 bp) hpS2 cDNA. Screening for positive animals was by Southern blot analysis. Distribution of hpS2 expression was determined by using Northern and Western blot analyses and immunohistochemical staining. Proliferation of the intestinal mucosa was determined by assessing the crypt cell production rate. Differences in susceptibility to intestinal damage were analyzed in animals that had received indomethacin (85 mg/kg s.c.) 0-30 h previously. Expression of hpS2 was limited to the enterocytes of the villi within the jejunum. In the nondamaged intestine, villus height and crypt cell production rate were similar in transgenic and negative (control) litter mates. However, there was a marked difference in the amount of damage caused by indomethacin in control and transgenic animals in the jejunum (30% reduction in villus height in controls vs. 12% reduction in transgenic animals, P < 0.01) but the damage sustained in the non-hpS2-expressing ileal region was similar in control and transgenic animals. These studies support the hypothesis that trefoil peptides are important in stimulating gastrointestinal repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.