5 resultados para morphological and histological alterations
em National Center for Biotechnology Information - NCBI
Resumo:
Apoptosis is a highly regulated form of cell death, characterized by distinctive features such as cellular shrinkage and nuclear condensation. We demonstrate here that proteolytic activation of hPAK65, a p21-activated kinase, induces morphological changes and elicits apoptosis. hPAK65 is cleaved both in vitro and in vivo by caspases at a single site between the N-terminal regulatory p21-binding domain and the C-terminal kinase domain. The C-terminal cleavage product becomes activated, with a kinetic profile that parallels caspase activation during apoptosis. This C-terminal hPAK65 fragment also activates the c-Jun N-terminal kinase pathway in vivo. Microinjection or transfection of this truncated hPAK65 causes striking alterations in cellular and nuclear morphology, which subsequently promotes apoptosis in both CHO and Hela cells. Conversely, apoptosis is delayed in cells expressing a dominant-negative form of hPAK65. These findings provide a direct evidence that the activated form of hPAK65 generated by caspase cleavage is a proapoptotic effector that mediates morphological and biochemical changes seen in apoptosis.
Resumo:
Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER–Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER–Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15°C is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER–Golgi transport.
Resumo:
Fossorial salamanders typically have elongate and attenuated heads and bodies, diminutive limbs, hands and feet, and extremely elongate tails. Batrachoseps from California, Lineatriton from eastern México, and Oedipina from southern México to Ecuador, all members of the family Plethodontidae, tribe Bolitoglossini, resemble one another in external morphology, which has evolved independently. Whereas Oedipina and Batrachoseps are elongate because there are more trunk vertebrae, a widespread homoplasy (parallelism) in salamanders, the genus Lineatriton is unique in having evolved convergently by an alternate “giraffe-neck” developmental program. Lineatriton has the same number of trunk vertebrae as related, nonelongated taxa, but individual trunk vertebrae are elongated. A robust phylogenetic hypothesis, based on sequences of three mtDNA genes, finds Lineatriton to be deeply nested within a clade characterized by generalized ecology and morphology. Lineatriton lineolus, the only currently recognized taxon in the genus, shows unanticipated genetic diversity. Surprisingly, geographically separated populations of L. lineolus are not monophyletic, but are sister taxa of different species of the morphologically generalized genus Pseudoeurycea. Lineatriton, long thought to be a unique monospecific lineage, is polyphyletic. Accordingly, the specialized morphology of Lineatriton displays homoplasy at two hierarchical levels: (i) with respect to other elongate lineages in the family (convergence), and (ii) within what is currently recognized as a single taxon (parallelism). These evolutionary events are of adaptive significance because to invade the lowland tropics salamanders must be either arboreal or fossorial; the repeated evolution of elongation and attenuation has led to multiple lowland invasions.
Resumo:
Presenilin 1 (PS1) expression is repressed by the p53 tumor suppressor. As shown herein, wild-type PS1 is an effective antiapoptotic molecule capable of significantly inhibiting p53-dependent and p53-independent cell death. We analyzed, at the functional and molecular levels, the brains of p53 knockout mice. Surprisingly, we found that lack of p53 expression induces apoptotic brain lesions, accompanied by learning deficiency and behavioral alterations. p53-deficient mice show an unexpected overexpression of p21waf1 with subsequent down-regulation of PS1 in their brains. This process is progressive and age-dependent. These data indicate that the p53 pathway, besides affecting tumor suppression, may play a major role in regulating neurobehavioral function and cell survival in the brain.
Resumo:
Arbuscular mycorrhizal (AM) fungi (Order Glomales, Class Zygomycetes) are a diverse group of soil fungi that form mutualistic associations with the roots of most species of higher plants. Despite intensive study over the past 25 years, the phylogenetic relationships among AM fungi, and thus many details of evolution of the symbiosis, remain unclear. Cladistic analysis was performed on fatty acid methyl ester (FAME) profiles of 15 species in Gigaspora and Scutellospora (family Gigasporaceae) by using a restricted maximum likelihood approach of continuous character data. Results were compared to a parsimony analysis of spore morphological characters of the same species. Only one tree was generated from each character set. Morphological and developmental data suggest that species with the simplest spore types are ancestral whereas those with complicated inner wall structures are derived. Spores of those species having a complex wall structure pass through stages of development identical to the mature stages of simpler spores, suggesting a pattern of classical Haeckelian recapitulation in evolution of spore characters. Analysis of FAME profiles supported this hypothesis when Glomus leptotichum was used as the outgroup. However, when Glomus etunicatum was chosen as the outgroup, the polarity of the entire tree was reversed. Our results suggest that FAME profiles contain useful information and provide independent criteria for generating phylogenetic hypotheses in AM fungi. The maximum likelihood approach to analyzing FAME profiles also may prove useful for many other groups of organisms in which profiles are empirically shown to be stable and heritable.