7 resultados para morning
em National Center for Biotechnology Information - NCBI
Resumo:
An endogenous circadian biological clock controls the temporal aspects of life in most organisms, including rhythmic control of genes involved in clock output pathways. In the fungus Neurospora crassa, one pathway known to be under control of the clock is asexual spore (conidia) development. To understand more fully the processes that are regulated by the N. crassa circadian clock, systematic screens were carried out for genes that oscillate at the transcriptional level. Time-of-day-specific cDNA libraries were generated and used in differential screens to identify six new clock-controlled genes (ccgs). Transcripts specific for each of the ccgs preferentially accumulate during the late night to early morning, although they vary with respect to steady-state mRNA levels and amplitude of the rhythm. Sequencing of the ends of the new ccg cDNAs revealed that ccg-12 is identical to N. crassa cmt encoding copper metallothionein, providing the suggestion that not all clock-regulated genes in N. crassa are specifically involved in the development of conidia. This was supported by finding that half of the new ccgs, including cmt(ccg-12), are not transcriptionally induced by developmental or light signals. These data suggest a major role for the clock in the regulation of biological processes distinct from development.
Resumo:
Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141–147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.
Resumo:
Photosynthesis and photoinhibition in field-grown rice (Oryza sativa L.) were examined in relation to leaf age and orientation. Two varieties (IR72 and IR65598-112-2 [BSI206]) were grown in the field in the Philippines during the dry season under highly irrigated, well-fertilized conditions. Flag leaves were examined 60 and 100 d after transplanting. Because of the upright nature of 60-d-old rice leaves, patterns of photosynthesis were determined by solar movements: light falling on the exposed surface in the morning, a low incident angle of irradiance at midday, and light striking the opposite side of the leaf blade in the afternoon. There was an early morning burst of CO2 assimilation and high levels of saturation of photosystem II electron transfer as incident irradiance reached a maximum level. However, by midday the photochemical efficiency increased again almost to maximum. Leaves that were 100 d old possessed a more horizontal orientation and were found to suffer greater levels of photoinhibition than younger leaves, and this was accompanied by increases in the de-epoxidation state of the xanthophyll cycle. Older leaves had significantly lower chlorophyll content but only slightly diminished photosynthesis capacity.
Resumo:
We review the study of flower color polymorphisms in the morning glory as a model for the analysis of adaptation. The pathway involved in the determination of flower color phenotype is traced from the molecular and genetic levels to the phenotypic level. Many of the genes that determine the enzymatic components of flavonoid biosynthesis are redundant, but, despite this complexity, it is possible to associate discrete floral phenotypes with individual genes. An important finding is that almost all of the mutations that determine phenotypic differences are the result of transposon insertions. Thus, the flower color diversity seized on by early human domesticators of this plant is a consequence of the rich variety of mobile elements that reside in the morning glory genome. We then consider a long history of research aimed at uncovering the ecological fate of these various flower phenotypes in the southeastern U.S. A large body of work has shown that insect pollinators discriminate against white phenotypes when white flowers are rare in populations. Because the plant is self-compatible, pollinator bias causes an increase in self-fertilization in white maternal plants, which should lead to an increase in the frequency of white genes, according to modifier gene theory. Studies of geographical distributions indicate other, as yet undiscovered, disadvantages associated with the white phenotype. The ultimate goal of connecting ecology to molecular genetics through the medium of phenotype is yet to be attained, but this approach may represent a model for analyzing the translation between these two levels of biological organization.
Resumo:
The level of mRNAs derived from the plastid-encoded psbD light-responsive promoter (LRP) is controlled by a circadian clock(s) in wheat (Triticum aestivum). The circadian oscillations in the psbD LRP mRNA level persisted for at least three cycles in continuous light and for one cycle in continuous dark, with maxima in subjective morning and minima in subjective early night. In vitro transcription in chloroplast extracts revealed that the circadian cycles in the psbD LRP mRNA level were dominantly attributed to the circadian-regulated transcription of the psbD LRP. The effects of various mutations introduced into the promoter region on the psbD LRP activity in vitro suggest the existence of two positive elements located between −54 and −36, which generally enhance the transcription activity, and an anomalous core promoter structure lacking the functional “−35” element, which plays a crucial role in the circadian fluctuation and light dependency of psbD LRP transcription activity.
Resumo:
Regulation of rhythmic peaks in levels of endogenous gibberellins (GAs) by photoperiod was studied in the short-day monocot sorghum (Sorghum bicolor [L.] Moench). Comparisons were made between three maturity (Ma) genotypes: 58M (Ma1Ma1, Ma2Ma2, phyB-1phyB-1, and Ma4Ma4 [a phytochrome B null mutant]); 90M (Ma1Ma1, Ma2Ma2, phyB-2phyB-2, and Ma4Ma4); and 100M (Ma1Ma1, Ma2Ma2, PHYBPHYB, and Ma4Ma4). Plants were grown for 14 d under 10-, 14-, 16-, 18-, and 20-h photoperiods, and GA levels were assayed by gas chromatography-mass spectrometry every 3 h for 24 h. Under inductive 10-h photoperiods, the peak of GA20 and GA1 levels in 90M and 100M was shifted from midday, observed earlier with 12-h photoperiods, to an early morning peak, and flowering was hastened. In addition, the early morning peaks in levels of GA20 and GA1 in 58M under conditions allowing early flowering (10-, 12-, and 14-h photoperiods) were shifted to midday by noninductive (18- and 20-h) photoperiods, and flowering was delayed. These results are consistent with the possibility that the diurnal rhythm of GA levels plays a role in floral initiation and may be one way by which the absence of phytochrome B causes early flowering in 58M under most photoperiods.
Resumo:
The chicken pineal gland contains the autonomous circadian oscillator together with the photic-input pathway. We searched for chicken pineal genes that are induced by light in a time-of-day-dependent manner, and isolated chicken homolog of bZIP transcription factor E4bp4 (cE4bp4) showing high similarity to vrille, one of the Drosophila clock genes. cE4bp4 was expressed rhythmically in the pineal gland with a peak at very early (subjective) night under both 12-h light/12-h dark cycle and constant dark conditions, and the phase was nearly opposite to the expression rhythm of cPer2, a chicken pineal clock gene. Luciferase reporter gene assays showed that cE4BP4 represses cPer2 promoter through a E4BP4-recognition sequence present in the 5′-flanking region, indicating that cE4BP4 can down-regulate the chick pineal cPer2 expression. In vivo light-perturbation studies showed that the prolongation of the light period to early subjective night maintained the high level expression of the pineal cE4bp4, and presumably as a consequence delayed the onset of the induction of the pineal cPer2 expression in the next morning. These light-dependent changes in the mRNA levels of the pineal cE4bp4 and cPer2 were followed by a phase-delay of the subsequent cycles of cE4bp4/cPer2 expression, suggesting that cE4BP4 plays an important role in the phase-delaying process as a light-dependent suppressor of cPer2 gene.