5 resultados para modified universal soil loss equation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2.15-Å resolution cocrystal structure of EcoRV endonuclease mutant T93A complexed with DNA and Ca2+ ions reveals two divalent metals bound in one of the active sites. One of these metals is ligated through an inner-sphere water molecule to the phosphate group located 3′ to the scissile phosphate. A second inner-sphere water on this metal is positioned approximately in-line for attack on the scissile phosphate. This structure corroborates the observation that the pro-SP phosphoryl oxygen on the adjacent 3′ phosphate cannot be modified without severe loss of catalytic efficiency. The structural equivalence of key groups, conserved in the active sites of EcoRV, EcoRI, PvuII, and BamHI endonucleases, suggests that ligation of a catalytic divalent metal ion to this phosphate may occur in many type II restriction enzymes. Together with previous cocrystal structures, these data allow construction of a detailed model for the pretransition state configuration in EcoRV. This model features three divalent metal ions per active site and invokes assistance in the bond-making step by a conserved lysine, which stabilizes the attacking hydroxide ion nucleophile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs) are thought to contribute to the abnormal lipoprotein profiles and increased risk of cardiovascular disease of patients with diabetes and renal failure, in part by preventing apolipoprotein B (apoB)-mediated cellular uptake of low density lipoproteins (LDL) by LDL receptors (LDLr). It has been proposed that AGE modification at one site in apoB, almost 1,800 residues from the putative apoB LDLr-binding domain, may be sufficient to induce an apoB conformational change that prevents binding to the LDLr. To further explore this hypothesis, we used 29 anti-human apoB mAbs to identify other potential sites on apoB that may be modified by in vitro advanced glycation of LDL. Glycation of LDL caused a time-dependent decrease in its ability to bind to the LDLr and in the immunoreactivity of six distinct apoB epitopes, including two that flank the apoB LDLr-binding domain. ApoB appears to be modified at multiple sites by these criteria, as the loss of glycation-sensitive epitopes was detected on both native glycated LDL and denatured, delipidated glycated apoB. Moreover, residues directly within the putative apoB LDLr-binding site are not apparently modified in glycated LDL. We propose that the inability of LDL modified by AGEs to bind to the LDLr is caused by modification of residues adjacent to the putative LDLr-binding site that were undetected by previous immunochemical studies. AGE modification either eliminates the direct participation of the residues in LDLr binding or indirectly alters the conformation of the apoB LDLr-binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to test the hypothesis that elevation in protein oxidative damage during the aging process is a targeted rather than a stochastic phenomenon. Oxidative damage to proteins in mitochondrial membranes in the flight muscles of the housefly, manifested as carbonyl modifications, was detected immunochemically with anti-dinitrophenyl antibodies. Adenine nucleotide translocase (ANT) was found to be the only protein in the mitochondrial membranes exhibiting a detectable age-associated increase in carbonyls. The age-related elevation in ANT carbonyl content was correlated with a corresponding loss in its functional activity. Senescent flies that had lost the ability to fly exhibited a relatively higher degree of ANT oxidation and a greater loss of functional activity than their cohorts of the same age that were still able to fly. Exposure of flies to 100% oxygen resulted in an increase in the level of ANT carbonyl content and a loss in its activity. In vitro treatment of mitochondria with a system that generated hydroxyl free radicals caused an increase in ANT carbonyl level and a decrease in ANT exchange activity. ANT was also the only mitochondrial membrane protein exhibiting adducts of the lipid peroxidation product 4-hydroxynonenal. Results of this study indicate that proteins in mitochondrial membranes are modified selectively during aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Missense mutations within the central DNA binding region of p53 are the most prevalent mutations found in human cancer. Numerous studies indicate that ‘hot-spot’ p53 mutants (which comprise ∼30% of human p53 gene mutations) are largely devoid of transcriptional activity. However, a growing body of evidence indicates that some non-hot-spot p53 mutants retain some degree of transcriptional activity in vivo, particularly against strong p53 binding sites. We have modified a previously described yeast-based p53 functional assay to readily identify such partial loss of function p53 mutants. We demonstrate the utility of this modified p53 functional assay using a diverse panel of p53 mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pH of xylem sap from tomato (Lycopersicon esculentum) plants increased from pH 5.0 to 8.0 as the soil dried. Detached wild-type but not flacca leaves exhibited reduced transpiration rates when the artificial xylem sap (AS) pH was increased. When a well-watered concentration of abscisic acid (0.03 μm) was provided in the AS, the wild-type transpirational response to pH was restored to flacca leaves. Transpiration from flacca but not from wild-type leaves actually increased in some cases when the pH of the AS was increased from 6.75 to 7.75, demonstrating an absolute requirement for abscisic acid in preventing stomatal opening and excessive water loss from plants growing in many different environments.