3 resultados para mixed stock analysis
em National Center for Biotechnology Information - NCBI
Resumo:
Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.
Resumo:
Previously, synaptic activity in the spinal cord of adult mammals was attributed exclusively to chemical neurotransmission. In this study, evidence was obtained for the existence, relative abundance, and widespread distribution of "mixed" (chemical and electrical) synapses on neurons throughout the spinal cords of adult mammals. Using combined confocal microscopy and "grid-mapped freeze fracture," 36 mixed synapses containing 88 "micro" gap junctions (median = 45 connexons) were found and mapped to 33 interneurons and motor neurons in Rexed laminae III-IX in cervical, thoracic, and lumbosacral spinal cords of adult male and female rats. Gap junctions were adjacent to presumptive active zones, where even small gap junctions would be expected to increase synaptic efficacy. Two morphological types of mixed synapse were discerned. One type contained distinctive active zones consisting of "nested" concentric toroidal deformations of pre- and postsynaptic membranes, which, because of their unusual topology, were designated as "synaptic sombreros." A second type had gap junctions adjacent to active zones consisting of broad, flat, shallow indentations of the plasma membrane. Morphometric analysis indicates that mixed synapses correspond to 3-5% of all synapses on the somata and proximal dendrites, but, because of their subcellular location and morphology, they could represent 30-100% of excitatory synapses. The relative abundance of mixed synapses on several classes of neurons in spinal cords of adult rats suggests that mixed synapses provide important but previously unrecognized pathways for bidirectional communication between neurons in the mammalian central nervous system.
Resumo:
PCR amplification of template DNAs extracted from mixed, naturally occurring microbial populations, using oligonucleotide primers complementary to highly conserved sequences, was used to obtain a large collection of diverse RNase P RNA-encoding genes. An alignment of these sequences was used in a comparative analysis of RNase P RNA secondary and tertiary structure. The new sequences confirm the secondary structure model based on sequences from cultivated organisms (with minor alterations in helices P12 and P18), providing additional support for nearly every base pair. Analysis of sequence covariation using the entire RNase P RNA data set reveals elements of tertiary structure in the RNA; the third nucleotides (underlined) of the GNRA tetraloops L14 and L18 are seen to interact with adjacent Watson-Crick base pairs in helix P8, forming A:G/C or G:A/U base triples. These experiments demonstrate one way in which the enormous diversity of natural microbial populations can be used to elucidate molecular structure through comparative analysis.