2 resultados para mind
em National Center for Biotechnology Information - NCBI
Resumo:
The prevalent view of binocular rivalry holds that it is a competition between the two eyes mediated by reciprocal inhibition among monocular neurons. This view is largely due to the nature of conventional rivalry-inducing stimuli, which are pairs of dissimilar images with coherent patterns within each eye’s image. Is it the eye of origin or the coherency of patterns that determines perceptual alternations between coherent percepts in binocular rivalry? We break the coherency of conventional stimuli and replace them by complementary patchworks of intermingled rivalrous images. Can the brain unscramble the pieces of the patchwork arriving from different eyes to obtain coherent percepts? We find that pattern coherency in itself can drive perceptual alternations, and the patchworks are reassembled into coherent forms by most observers. This result is in agreement with recent neurophysiological and psychophysical evidence demonstrating that there is more to binocular rivalry than mere eye competition.
Resumo:
It is a familiar experience that we tend to close our eyes or divert our gaze when concentrating attention on cognitively demanding tasks. We report on the brain activity correlates of directing attention away from potentially competing visual processing and toward processing in another sensory modality. Results are reported from a series of positron-emission tomography studies of the human brain engaged in somatosensory tasks, in both "eyes open" and "eyes closed" conditions. During these tasks, there was a significant decrease in the regional cerebral blood flow in the visual cortex, which occurred irrespective of whether subjects had to close their eyes or were instructed to keep their eyes open. These task-related deactivations of the association areas belonging to the nonrelevant sensory modality were interpreted as being due to decreased metabolic activity. Previous research has clearly demonstrated selective activation of cortical regions involved in attention-demanding modality-specific tasks; however, the other side of this story appears to be one of selective deactivation of unattended areas.