7 resultados para migratory fishes
em National Center for Biotechnology Information - NCBI
Resumo:
We report herein that expression of α2β1 integrin increased human erythroleukemia K562 transfectant (KX2C2) cell movement after extravasation into liver parenchyma. In contrast, a previous study demonstrated that α2β1 expression conferred a stationary phenotype to human rhabdomyosarcoma RD transfectant (RDX2C2) cells after extravasation into the liver. We therefore assessed the adhesive and migratory function of α2β1 on KX2C2 and RDX2C2 cells using a α2β1-specific stimulatory monoclonal antibody (mAb), JBS2, and a blocking mAb, BHA2.1. In comparison with RDX2C2 cells, KX2C2 were only weakly adherent to collagen and laminin. JBS2 stimulated α2β1-mediated interaction of KX2C2 cells with both collagen and laminin resulting in increases in cell movement on both matrix proteins. In the presence of Mn2+, JBS2-stimulated adhesion on collagen beyond an optimal level for cell movement. In comparison, an increase in RDX2C2 cell movement on collagen required a reduction in its adhesive strength provided by the blocking mAb BHA2.1. Consistent with these in vitro findings, in vivo videomicroscopy revealed that α2β1-mediated postextravasation cell movement of KX2C2 cells in the liver tissue could also be stimulated by JBS2. Thus, results demonstrate that α2β1 expression can modulate postextravasation cell movement by conferring either a stationary or motile phenotype to different cell types. These findings may be related to the differing metastatic activities of different tumor cell types.
Resumo:
Most migratory bird populations are composed of individuals that migrate and individuals that remain resident. While the role of ecological factors in maintaining this behavioral dimorphism has received much attention, the importance of genetic constraints on the evolution of avian migration has not yet been considered. Drawing on the recorded migratory activities of 775 blackcaps (Sylvia atricapilla) from a partially migratory population in southern France, we tested two alternative genetic models about the relationship between incidence and amount of migratory activity. The amount of migratory activity could be the continuous variable “underlying” the phenotypic expression of migratory urge, or, alternatively, the expression of both traits could be controlled by two separate genetic systems. The distributions of migratory activities in five different cohorts and the inheritance pattern derived from selective breeding experiments both indicate that incidence and amount of migratory activity are two aspects of one trait. Thus, all birds without measurable activity have activity levels at the low end of a continuous distribution, below the limit of expression or detection. The phenotypic dichotomy “migrant–nonmigrant” is caused by a threshold which may not be fixed but influenced both genetically and environmentally. This finding has profound implications for the evolution of migration: the transition from migratoriness to residency should not only be driven by selection favoring resident birds but also by selection for lower migratory activity. This potential for selection on two aspects, residency and migration distance, of the same trait may enable extremely rapid evolutionary changes to occur in migratory behavior.
Resumo:
The Chondrichthyes (cartilaginous fishes) are commonly accepted as being sister group to the other extant Gnathostomata (jawed vertebrates). To clarify gnathostome relationships and to aid in resolving and dating the major piscine divergences, we have sequenced the complete mtDNA of the starry skate and have included it in phylogenetic analysis along with three squalomorph chondrichthyans—the common dogfish, the spiny dogfish, and the star spotted dogfish—and a number of bony fishes and amniotes. The direction of evolution within the gnathostome tree was established by rooting it with the most closely related non-gnathostome outgroup, the sea lamprey, as well as with some more distantly related taxa. The analyses placed the chondrichthyans in a terminal position in the piscine tree. These findings, which also suggest that the origin of the amniote lineage is older than the age of the oldest extant bony fishes (the lungfishes), challenge the evolutionary direction of several morphological characters that have been used in reconstructing gnathostome relationships. Applying as a calibration point the age of the oldest lungfish fossils, 400 million years, the molecular estimate placed the squalomorph/batomorph divergence at ≈190 million years before present. This dating is consistent with the occurrence of the earliest batomorph (skates and rays) fossils in the paleontological record. The split between gnathostome fishes and the amniote lineage was dated at ≈420 million years before present.
Resumo:
Each year, millions of monarch butterflies from eastern North America migrate to overwinter in 10–13 discrete colonies located in the Oyamel forests of central Mexico. For decades efforts to track monarch migration have relied on observations and tag-recapture methods, culminating with the discovery of the wintering colonies in 1975. Monarch tag returns from Mexico, however, are few and primarily from two accessible colonies, and therefore tag-recapture techniques have not quantified natal origins or distinctiveness among monarch populations at wintering sites. Such information would be invaluable in the conservation of the monarch and its migration phenomenon since the wintering sites currently are threatened by habitat alteration. Here we show that stable hydrogen (δD) and carbon (δ13C) isotope ratios of wintering monarchs can be used to evaluate natal origins on the summer breeding range. Stable-hydrogen and carbon isotopic values of 597 wintering monarchs from 13 wintering roost sites were compared with isotopic patterns measured in individuals at natal sites across their breeding range over a single migration cycle. We determined that all monarch wintering colonies were composed of individuals originating mainly from the Midwest, United States, thereby providing evidence for a panmictic model of wintering colony composition. However, two colonies showed more northerly origins, suggesting possible priority colonies for conservation efforts.
Resumo:
To what extent do local populations of tropical reef fishes persist through the recruitment of pelagic larvae to their natal reef? Endemics from small, isolated islands can help answer that question by indicating whether special biological attributes are needed for long-term survival under enforced localization in high-risk situations. Taxonomically and biologically, the endemics from seven such islands are broadly representative of their regional faunas. As natal-site recruitment occurs among reef fishes in much less isolated situations, these characteristics of island endemics indicate that a wide range of reef fishes could have persistent self-sustaining local populations. Because small islands regularly support substantial reef fish faunas, regional systems of small reserves could preserve much of the diversity of these fishes.
Resumo:
The stem cell leukemia (SCL) gene encodes a tissue-specific basic helix–loop–helix (bHLH) protein with a pivotal role in hemopoiesis and vasculogenesis. Several enhancers have been identified within the murine SCL locus that direct reporter gene expression to subdomains of the normal SCL expression pattern, and long-range sequence comparisons of the human and murine SCL loci have identified additional candidate enhancers. To facilitate the characterization of regulatory elements, we have sequenced and analyzed 33 kb of the SCL genomic locus from the pufferfish Fugu rubripes, a species with a highly compact genome. Although the pattern of SCL expression is highly conserved from mammals to teleost fish, the genes flanking pufferfish SCL were unrelated to those known to flank both avian and mammalian SCL genes. These data suggest that SCL regulatory elements are confined to the region between the upstream and downstream flanking genes, a region of 65 kb in human and 8.5 kb in pufferfish. Consistent with this hypothesis, the entire 33-kb pufferfish SCL locus directed appropriate expression to hemopoietic and neural tissue in transgenic zebrafish embryos, as did a 10.4-kb fragment containing the SCL gene and extending to the 5′ and 3′ flanking genes. These results demonstrate the power of combining the compact genome of the pufferfish with the advantages that zebrafish provide for studies of gene regulation during development. Furthermore, the pufferfish SCL locus provides a powerful tool for the manipulation of hemopoiesis and vasculogenesis in vivo.