5 resultados para microwave oscillation

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El Niño and the related phenomenon Southern Oscillation (ENSO) is the strongest signal in the interannual variation of ocean-atmosphere system. It is mainly a tropical event but its impact is global. ENSO has been drawing great scientific attention in many international research programs. There has been an observational system for the tropical ocean, and scientists have known the climatologies of the upper ocean, developed some theories about the ENSO cycle, and established coupled ocean-atmosphere models to give encouraging predictions of ENSO for a 1-year lead. However, questions remain about the physical mechanisms for the ENSO cycle and its irregularity, ENSO-monsoon interactions, long-term variation of ENSO, and increasing the predictive skill of ENSO and its related climate variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclins are cell cycle regulators whose proteins oscillate dramatically during the cell cycle. Cyclin steady-state mRNA levels also fluctuate, and there are indications that both their rate of transcription and mRNA stability are under cell cycle control. Here, we demonstrate the transcriptional regulation of higher eukaryote cyclins throughout the whole cell cycle with a high temporal resolution. The promoters of two Arabidopsis cyclins, cyc3aAt and cyc1At, mediated transcriptional oscillation of the beta-glucuronidase (gus) reporter gene in stably transformed tobacco BY-2 cell lines. The rate of transcription driven by the cyc3aAt promoter was very low during G1, slowly increased during the S phase, peaked at the G2 phase and G2-to-M transition, and was down-regulated before early metaphase. In contrast, the rate of the cyc1At-related transcription increased upon exit of the S phase, peaked at the G2-to-M transition and during mitosis, and decreased upon exit from the M phase. This study indicates that transcription mechanisms that seem to be conserved among species play a significant role in regulating the mRNA abundance of the plant cyclins. Furthermore, the transcription patterns of cyc3aAt and cyc1At were coherent with their slightly higher sequence similarity to the A and B groups of animal cyclins, respectively, suggesting that they may fulfill comparable roles during the cell cycle.