5 resultados para metaphor, research and development, homeostatic property cluster phenomena
em National Center for Biotechnology Information - NCBI
Resumo:
This paper is a review of recent trends in United States expenditures on research and development (R&D). Real expenditures by both the government and the private sector increased rapidly between the mid-1970s and the mid-1980s, and have since leveled off. This is true of both overall expenditures and expenditures on basic research, as well as funding of academic research. Preliminary estimates indicate that about $170 billion was spent on R&D in the United States in 1995, with ≈60% of that funding coming from the private sector and about 35% from the federal government. In comparison to other countries, we have historically spent more on R&D relative to our economy than other advanced economies, but this advantage appears to be disappearing. If defense-related R&D is excluded, our expenditures relative to the size of the economy are considerably smaller than those of other similar economies.
Resumo:
This paper considers the appropriate role for government in the support of scientific and technological progress in health care; the information the federal government needs to make well-informed decisions about its role; and the ways that federal policy toward research and development should respond to scientific advances, technology trends, and changes in the political and social environment. The principal justification for government support of research rests upon economic characteristics that lead private markets to provide inappropriate levels of research support or to supply inappropriate quantities of the products that result from research. The federal government has two basic tools for dealing with these problems: direct subsidies for research and strengthened property rights that can increase the revenues that companies receive for the products that result from research. In the coming years, the delivery system for health care will continue to undergo dramatic changes, new research opportunities will emerge at a rapid pace, and the pressure to limit discretionary federal spending will intensify. These forces make it increasingly important to improve the measurement of the costs and benefits of research and to recognize the tradeoffs among alternative policies for promoting innovation in health care.
Resumo:
The intellectual property laws in the United States provide the owners of intellectual property with discretion to license the right to use that property or to make or sell products that embody the intellectual property. However, the antitrust laws constrain the use of property, including intellectual property, by a firm with market power and may place limitations on the licensing of intellectual property. This paper focuses on one aspect of antitrust law, the so-called “essential facilities doctrine,” which may impose a duty upon firms controlling an “essential facility” to make that facility available to their rivals. In the intellectual property context, an obligation to make property available is equivalent to a requirement for compulsory licensing. Compulsory licensing may embrace the requirement that the owner of software permit access to the underlying code so that others can develop compatible application programs. Compulsory licensing may undermine incentives for research and development by reducing the value of an innovation to the inventor. This paper shows that compulsory licensing also may reduce economic efficiency in the short run by facilitating the entry of inefficient producers and by promoting licensing arrangements that result in higher prices.
Resumo:
The Ah receptor (AHR) is a ligand-activated transcription factor that mediates a pleiotropic response to environmental contaminants such as benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. In an effort to gain insight into the physiological role of the AHR and to develop models useful in risk assessment, gene targeting was used to inactivate the murine Ahr gene by homologous recombination. Ahr-/- mice are viable and fertile but show a spectrum of hepatic defects that indicate a role for the AHR in normal liver growth and development. The Ahr-/- phenotype is most severe between 0-3 weeks of age and involves slowed early growth and hepatic defects, including reduced liver weight, transient microvesicular fatty metamorphosis, prolonged extramedullary hematopoiesis, and portal hypercellularity with thickening and fibrosis.
Resumo:
Several human neurological disorders are associated with proteins containing abnormally long runs of glutamine residues. Strikingly, most of these proteins contain two or more additional long runs of amino acids other than glutamine. We screened the current human, mouse, Drosophila, yeast, and Escherichia coli protein sequence data bases and identified all proteins containing multiple long homopeptides. This search found multiple long homopeptides in about 12% of Drosophila proteins but in only about 1.7% of human, mouse, and yeast proteins and none among E. coli proteins. Most of these sequences show other unusual sequence features, including multiple charge clusters and excessive counts of homopeptides of length > or = two amino acid residues. Intriguingly, a large majority of the identified Drosophila proteins are essential developmental proteins and, in particular, most play a role in central nervous system development. Almost half of the human and mouse proteins identified are homeotic homologs. The role of long homopeptides in fine-tuning protein conformation for multiple functional activities is discussed. The relative contributions of strand slippage and of dynamic mutation are also addressed. Several new experiments are proposed.