9 resultados para metalloprotease

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid β peptide (Aβ), the principal proteinaceous component of amyloid plaques in brains of Alzheimer’s disease patients, is derived by proteolytic cleavage of the amyloid precursor protein (APP). Proteolytic cleavage of APP by a putative α-secretase within the Aβ sequence precludes the formation of the amyloidogenic peptides and leads to the release of soluble APPsα into the medium. By overexpression of a disintegrin and metalloprotease (ADAM), classified as ADAM 10, in HEK 293 cells, basal and protein kinase C-stimulated α-secretase activity was increased severalfold. The proteolytically activated form of ADAM 10 was localized by cell surface biotinylation in the plasma membrane, but the majority of the proenzyme was found in the Golgi. These results support the view that APP is cleaved both at the cell surface and along the secretory pathway. Endogenous α-secretase activity was inhibited by a dominant negative form of ADAM 10 with a point mutation in the zinc binding site. Studies with purified ADAM 10 and Aβ fragments confirm the correct α-secretase cleavage site and demonstrate a dependence on the substrate’s conformation. Our results provide evidence that ADAM 10 has α-secretase activity and many properties expected for the proteolytic processing of APP. Increases of its expression and activity might be beneficial for the treatment of Alzheimer’s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been suspected that proteolytic activity associated with advancing growth cones may be required for axon extension. We have isolated mutations in the kuzbanian (kuz) gene, which is expressed in the nervous system and encodes a putative zinc metalloprotease with a disintegrin domain. Drosophila embryos with loss-of-function mutations in kuz have dramatic defects in the development of central nervous system axon pathways, with many axons stalling and failing to extend through the nerve cord. This phenotype is rescued by panneural expression of kuz mRNA in the embryo. These results show that the Kuz metalloprotease is required for axon extension, suggesting a requirement for proteolytic activity at the growth cone surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands that activate the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors that appear to be proteolytically released by members of the ADAM family of metalloproteases. Because membrane-anchored EGFR ligands are thought to be biologically active, the role of ligand release in the regulation of EGFR signaling is unclear. To investigate this question, we used metalloprotease inhibitors to block EGFR ligand release from human mammary epithelial cells. These cells express both transforming growth factor α and amphiregulin and require autocrine signaling through the EGFR for proliferation and migration. We found that metalloprotease inhibitors reduced cell proliferation in direct proportion to their effect on transforming growth factor α release. Metalloprotease inhibitors also reduced growth of EGF-responsive tumorigenic cell lines and were synergistic with the inhibitory effects of antagonistic EGFR antibodies. Blocking release of EGFR ligands also strongly inhibited autocrine activation of the EGFR and reduced both the rate and persistence of cell migration. The effects of metalloprotease inhibitors could be reversed by either adding exogenous EGF or by expressing an artificial gene for EGF that lacked a membrane-anchoring domain. Our results indicate that soluble rather than membrane-anchored forms of the ligands mediate most of the biological effects of EGFR ligands. Metalloprotease inhibitors have shown promise in preventing spread of metastatic disease. Many of their antimetastatic effects could be the result of their ability to inhibit autocrine signaling through the EGFR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenovirus E1A 243-amino acid protein can repress a variety of enhancer -linked viral and cellular promoters. This repression is presumed to be mediated by its interaction with and sequestration of p3OO, a transcriptional coactivator. Type IV 72-kDa collagenase is one of the matrix metalloproteases that has been implicated in differentiation, development, angiogenesis, and tumor metastasis. We show here that the cell type-specific transcription factor AP-2 is an important transcription factor for the activation of the type IV 72-kDa collagenase promoter and that adenovirus E1A 243-amino acid protein represses this promoter by targeting AP-2. Glutathione S-transferase-affinity chromatography studies show that the E1A protein interacts with the DNA binding/dimerization region of AP-2 and that the N-terminal amino acids of E1A protein are required for this interaction. Further, E1A deletion mutants which do not bind to p3OO can repress this collagenase promoter as efficiently as the wildtype E1A protein. Because the AP-2 element is present in a variety of viral and cellular enhancers which are repressed by E1A, these studies suggest that E1A protein can repress cellular and viral promoter/enhancers by forming a complex with cellular transcription factors and that this repression mechanism may be independent of its interaction with p3OO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strains of Bacteroides fragilis associated with diarrheal disease (enterotoxigenic B. fragilis) produce a 20-kDa zinc-dependent metalloprotease toxin (B. fragilis enterotoxin; BFT) that reversibly stimulates chloride secretion and alters tight junctional function in polarized intestinal epithelial cells. BFT alters cellular morphology and physiology most potently and rapidly when placed on the basolateral membrane of epithelial cells, suggesting that the cellular substrate for BFT may be present on this membrane. Herein, we demonstrate that BFT specifically cleaves within 1 min the extracellular domain of the zonula adherens protein, E-cadherin. Cleavage of E-cadherin by BFT is ATP-independent and essential to the morphologic and physiologic activity of BFT. However, the morphologic changes occurring in response to BFT are dependent on target-cell ATP. E-cadherin is shown here to be a cellular substrate for a bacterial toxin and represents the identification of a mechanism of action, cell-surface proteolytic activity, for a bacterial toxin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NH2-terminal domains of membrane-bound sterol regulatory element-binding proteins (SREBPs) are released into the cytosol by regulated intramembrane proteolysis, after which they enter the nucleus to activate genes encoding lipid biosynthetic enzymes. Intramembrane proteolysis is catalyzed by Site-2 protease (S2P), a hydrophobic zinc metalloprotease that cleaves SREBPs at a membrane-embedded leucine-cysteine bond. In the current study, we use domain-swapping methods to localize the residues within the SREBP-2 membrane-spanning segment that are required for cleavage by S2P. The studies reveal a requirement for an asparagine-proline sequence in the middle third of the transmembrane segment. We propose a model in which the asparagine-proline sequence serves as an NH2-terminal cap for a portion of the transmembrane α-helix of SREBP, allowing the remainder of the α-helix to unwind partially to expose the peptide bond for cleavage by S2P.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biochemical, epidemiological, and genetic findings demonstrate a link between cholesterol levels, processing of the amyloid precursor protein (APP), and Alzheimer's disease. In the present report, we identify the α-secretase ADAM 10 (a disintegrin and metalloprotease) as a major target of the cholesterol effects on APP metabolism. Treatment of various peripheral and neural cell lines with either the cholesterol-extracting agent methyl-β-cyclodextrin or the hydroxymethyl glutaryl-CoA reductase inhibitor lovastatin resulted in a drastic increase of secreted α-secretase cleaved soluble APP. This strong stimulatory effect was in the range obtained with phorbol esters and was further increased in cells overexpressing ADAM 10. In cells overexpressing APP, the increase of α-secretase activity resulted in a decreased secretion of Aβ peptides. Several mechanisms were elucidated as being the basis of enhanced α-secretase activity: increased membrane fluidity and impaired internalization of APP were responsible for the effect observed with methyl-β-cyclodextrin; treatment with lovastatin resulted in higher expression of the α-secretase ADAM 10. Our results demonstrate that cholesterol reduction promotes the nonamyloidogenic α-secretase pathway and the formation of neuroprotective α-secretase cleaved soluble APP by several mechanisms and suggest approaches to prevention of or therapy for Alzheimer's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional structures of the inactive protein precursors (zymogens) of the serine, cysteine, aspartic, and metalloprotease classes of proteolytic enzymes are known. Comparisons of these structures with those of the mature, active proteases reveal that, in general, the preformed, active conformations of the residues involved in catalysis are rendered sterically inaccessible to substrates by the residues of the zymogens’ N-terminal extensions or prosegments. The prosegments interact in nonsubstrate-like fashions with the residues of the active sites in most of the cases. The gastric aspartic proteases have a well-characterized zymogen conversion pathway. Structures of human progastricsin, the inactive intermediate 2, and active human pepsin are known and have been used to define the conversion pathway. The structure of the zymogen precursor of plasmepsin II, the malarial aspartic protease, shows a new twist on the mode of inactivation used by the gastric zymogens. The prosegment of proplasmepsin disrupts the active conformation of the two catalytic aspartic acid residues by inducing a major reorientation of the two domains of the mature protease. The picornaviral 2A and 3C proteases have a chymotrypsin-like tertiary structure but with a cysteine nucleophile. These enzymes cleave themselves from the viral polyprotein in cis (intramolecular cleavage) and carry out trans cleavages of other scissile peptides important for the virus life cycle. Although the structure of the precursor viral polyprotein is unknown, it probably resembles the organization of the proenzymes of the bacterial serine proteases, subtilisin, and α-lytic protease. Cleavage of the prosegment is known to occur in cis for these precursor molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH2-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.