10 resultados para mesopredator release hypothesis
em National Center for Biotechnology Information - NCBI
Resumo:
A Ca2+-dependent synaptic vesicle-recycling pathway emanating from the plasma membrane adjacent to the dense body at the active zone has been demonstrated by blocking pinch-off of recycling membrane by using the Drosophila mutant, shibire. Exposure of wild-type Drosophila synapses to low Ca2+/high Mg2+ saline is shown here to block this active zone recycling pathway at the stage in which invaginations of the plasma membrane develop adjacent to the dense body. These observations, in combination with our previous demonstration that exposure to high Ca2+ causes “docked” vesicles to accumulate in the identical location where active zone endocytosis occurs, suggest the possibility that a vesicle-recycling pathway emanating from the active zone may exist that is stimulated by exposure to elevated Ca2+, thereby causing an increase in vesicle recycling, and is suppressed by exposure to low Ca2+ saline, thereby blocking newly forming vesicles at the invagination stage. The presence of a Ca2+-dependent endocytotic pathway at the active zone opens up the following possibilities: (i) electron microscopic omega-shaped images (and their equivalent, freeze fracture dimples) observed at the active zone adjacent to the dense body could represent endocytotic images (newly forming vesicles) rather than exocytotic images; (ii) vesicles observed attached to the plasma membrane adjacent to the dense body could represent newly formed vesicles rather than vesicles “docked” for release of transmitter.
Resumo:
Widespread interest in producing transgenic organisms is balanced by concern over ecological hazards, such as species extinction if such organisms were to be released into nature. An ecological risk associated with the introduction of a transgenic organism is that the transgene, though rare, can spread in a natural population. An increase in transgene frequency is often assumed to be unlikely because transgenic organisms typically have some viability disadvantage. Reduced viability is assumed to be common because transgenic individuals are best viewed as macromutants that lack any history of selection that could reduce negative fitness effects. However, these arguments ignore the potential advantageous effects of transgenes on some aspect of fitness such as mating success. Here, we examine the risk to a natural population after release of a few transgenic individuals when the transgene trait simultaneously increases transgenic male mating success and lowers the viability of transgenic offspring. We obtained relevant life history data by using the small cyprinodont fish, Japanese medaka (Oryzias latipes) as a model. Our deterministic equations predict that a transgene introduced into a natural population by a small number of transgenic fish will spread as a result of enhanced mating advantage, but the reduced viability of offspring will cause eventual local extinction of both populations. Such risks should be evaluated with each new transgenic animal before release.
Resumo:
Translation termination requires two codon-specific polypeptide release factors in prokaryotes and one omnipotent factor in eukaryotes. Sequences of 17 different polypeptide release factors from prokaryotes and eukaryotes were compared. The prokaryotic release factors share residues split into seven motifs. Conservation of many discrete, perhaps critical, amino acids is observed in eukaryotic release factors, as well as in the C-terminal portion of elongation factor (EF) G. Given that the C-terminal domains of EF-G interacts with ribosomes by mimicry of a tRNA structure, the pattern of conservation of residues in release factors may reflect requirements for a tRNA-mimicry for binding to the A site of the ribosome. This mimicry would explain why release factors recognize stop codons and suggests that all prokaryotic and eukaryotic release factors evolved from the progenitor of EF-G.
Resumo:
The neuropeptide galanin is predominantly expressed by the lactotrophs (the prolactin secreting cell type) in the rodent anterior pituitary and in the median eminence and paraventricular nucleus of the hypothalamus. Prolactin and galanin colocalize in the same secretory granule, the expression of both proteins is extremely sensitive to the estrogen status of the animal. The administration of estradiol-17β induces pituitary hyperplasia followed by adenoma formation and causes a 3,000-fold increase in the galanin mRNA content of the lactotroph. To further study the role of galanin in prolactin release and lactotroph growth we now report the generation of mice carrying a loss-of-function mutation of the endogenous galanin gene. There is no evidence of embryonic lethality and the mutant mice grow normally. The specific endocrine abnormalities identified to date, relate to the expression of prolactin. Pituitary prolactin message levels and protein content of adult female mutant mice are reduced by 30–40% compared with wild-type controls. Mutant females fail to lactate and pups die of starvation/dehydration unless fostered onto wild-type mothers. Prolactin secretion in mutant females is markedly reduced at 7 days postpartum compared with wild-type controls with an associated failure in mammary gland maturation. There is an almost complete abrogation of the proliferative response of the lactotroph to high doses of estrogen, with a failure to up-regulate prolactin release, STAT5 expression or to increase pituitary cell number. These data further support the hypothesis that galanin acts as a paracrine regulator of prolactin expression and as a growth factor to the lactotroph.
Resumo:
Neuropeptides are slowly released from a limited pool of secretory vesicles. Despite decades of research, the composition of this pool has remained unknown. Endocrine cell studies support the hypothesis that a population of docked vesicles supports the first minutes of hormone release. However, it has been proposed that mobile cytoplasmic vesicles dominate the releasable neuropeptide pool. Here, to determine the cellular basis of the releasable pool, single green fluorescent protein-labeled secretory vesicles were visualized in neuronal growth cones with the use of an inducible construct or total internal reflection fluorescence microscopy. We report that vesicle movement follows the diffusion equation. Furthermore, rapidly moving secretory vesicles are used more efficiently than stationary vesicles near the plasma membrane to support stimulated release. Thus, randomly moving cytoplasmic vesicles participate in the first minutes of neuropeptide release. Importantly, the preferential recruitment of diffusing cytoplasmic secretory vesicles contributes to the characteristic slow kinetics and limited extent of sustained neuropeptide release.
Resumo:
Recovery of cell volume in response to osmotic stress is mediated in part by increases in the Cl- permeability of the plasma membrane. These studies evaluate the hypothesis that ATP release and autocrine stimulation of purinergic (P2) receptors couple increases in cell volume to opening of Cl- channels. In HTC rat hepatoma cells, swelling induced by hypotonic exposure increased membrane Cl- current density to 44.8 +/- 7.1 pA/pF at -80 mV. Both the rate of volume recovery and the increase in Cl- permeability were inhibited in the presence of the ATP hydrolase apyrase (3 units/ml) or by exposure to the P2 receptor blockers suramin and Reactive Blue 2 (10-100 microM). Cell swelling also stimulated release of ATP. Hypotonic exposure increased the concentration of ATP in the effluent of perfused cells by 170 +/- 36 nM in the presence of a nucleotidase inhibitor (P < 0.01). In whole-cell recordings with ATP as the charge carrier, cell swelling increased membrane current density approximately 30-fold to 16.5 +/- 10.4 pA/pF. These findings indicate that increases in cell volume lead to efflux of ATP through opening of a conductive pathway consistent with a channel, and that extracellular ATP is required for recovery from swelling. ATP may function as an autocrine factor that couples increases in cell volume to opening of Cl- channels through stimulation of P2 receptors.
Resumo:
The dopamine hypothesis of schizophrenia proposes that hyperactivity of dopaminergic transmission is associated with this illness, but direct observation of abnormalities of dopamine function in schizophrenia has remained elusive. We used a newly developed single photon emission computerized tomography method to measure amphetamine-induced dopamine release in the striatum of fifteen patients with schizophrenia and fifteen healthy controls. Amphetamine-induced dopamine release was estimated by the amphetamine-induced reduction in dopamine D2 receptor availability, measured as the binding potential of the specific D2 receptor radiotracer [123I] (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl]benzamide ([123I]IBZM). The amphetamine-induced decrease in [123I]IBZM binding potential was significantly greater in the schizophrenic group (-19.5 +/- 4.1%) compared with the control group (-7.6 +/- 2.1%). In the schizophrenic group, elevated amphetamine effect on [123I]IBZM binding potential was associated with emergence or worsening of positive psychotic symptoms. This result suggests that psychotic symptoms elicited in this experimental setting in schizophrenic patients are associated with exaggerated stimulation of dopaminergic transmission. Such an observation would be compatible with an abnormal responsiveness of dopaminergic neurons in schizophrenia.
Resumo:
The Escherichia coli chaperonins GroEL and GroES facilitate the refolding of polypeptide chains in an ATP hydrolysis-dependent reaction. The elementary steps in the binding and release of polypeptide substrates to GroEL were investigated in surface plasmon resonance studies to measure the rates of binding and dissociation of a normative variant of subtilisin. The rate constants determined for GroEL association with and dissociation from this variant yielded a micromolar dissociation constant, in agreement with independent calorimetric estimates. The rate of GroEL dissociation from the nonnative chain was increased significantly in the presence of 5'-adenylylimidodiphosphate (AMP-PNP), ADP, and ATP, yielding maximal values between 0.04 and 0.22 s(-1). The sigmoidal dependence of the dissociation rate on the concentration of AMP-PNP and ADP indicated that polypeptide dissociation is limited by a concerted conformational change that occurs after nucleotide binding. The dependence of the rate of release on ATP exhibited two sigmoidal transitions attributable to nucleotide binding to the distal and proximal toroid of a GroEL-polypeptide chain complex. The addition of GroES resulted in a marked increase in the rate of nonnative polypeptide release from GroEL, indicating that the cochaperonin binds more rapidly than the dissociation of polypeptides. These data demonstrate the importance of nucleotide binding-promoted concerted conformational changes for the release of chains from GroEL, which correlate with the sigmoidal hydrolysis of ATP by the chaperonin. The implications of these findings are discussed in terms of a working hypothesis for a single cycle of chaperonin action.
Resumo:
Previous research indicates that norepinephrine and dopamine stimulate release of luteinizing hormone (LH)-releasing hormone (LHRH), which then reaches the adenohypophysis via the hypophyseal portal vessels to release LH. Norepinephrine exerts its effect via alpha 1-adrenergic receptors, which stimulate the release of nitric oxide (NO) from nitricoxidergic (NOergic) neurons in the medial basal hypothalamus (MBH). The NO activates guanylate cyclase and cyclooxygenase, thereby inducing release of LHRH into the hypophyseal portal vessels. We tested the hypothesis that these two catecholamines modulate NO release by local feedback. MBH explants were incubated in the presence of sodium nitroprusside (NP), a releaser of NO, and the effect on release of catecholamines was determined. NP inhibited release of norepinephrine. Basal release was increased by incubation of the tissue with the NO scavenger hemoglobin (20 micrograms/ml). Hemoglobin also blocked the inhibitory effect of NP. In the presence of high-potassium (40 mM) medium to depolarize cell membranes, norepinephrine release was increased by a factor of 3, and this was significantly inhibited by NP. Hemoglobin again produced a further increase in norepinephrine release and also blocked the action of NP. When constitutive NO synthase was inhibited by the competitive inhibitor NG-monomethyl-L-arginine (NMMA) at 300 microM, basal release of norepinephrine was increased, as was potassium-evoked release, and this was associated in the latter instance with a decrease in tissue concentration, presumably because synthesis did not keep up with the increased release in the presence of NMMA. The results were very similar with dopamine, except that reduction of potassium-evoked dopamine release by NP was not significant. However, the increase following incubation with hemoglobin was significant, and hemoglobin, when incubated with NP, caused a significant elevation in dopamine release above that with NP alone. In this case, NP increased tissue concentration of dopamine along with inhibiting release, suggesting that synthesis continued, thereby raising the tissue concentration in the face of diminished release. When the tissue was incubated with NP plus hemoglobin, which caused an increase in release above that obtained with NP alone, the tissue concentration decreased significantly compared with that in the absence of hemoglobin, indicating that, with increased release, release exceeded synthesis, causing a fall in tissue concentration. When NO synthase was blocked by NMMA, the release of dopamine, under either basal or potassium-evoked conditions, was increased. Again, in the latter instance the tissue concentration declined significantly, presumably because synthesis did not match release. Therefore, the results were very similar with both catecholamines and indicate that NO acts to suppress release of both amines. Since both catecholamines activate the release of LHRH, the inhibition of their release by NO serves as an ultra-short-loop negative feedback by which NO inhibits the release of the catecholamines, thereby reducing the activation of the NOergic neurons and decreasing the release of LHRH. This may be an important means for terminating the pulses of release of LHRH, which generate the pulsatile release of LH that stimulates gonadal function in both male and female mammals.
Resumo:
Our previous studies have shown that stimulation of the anterior ventral third ventricular region increases atrial natriuretic peptide (ANP) release, whereas lesions of this structure, the median eminence, or removal of the neural lobe of the pituitary block ANP release induced by blood volume expansion (BVE). These results indicate that participation of the central nervous system is crucial in these responses, possibly through mediation by neurohypophysial hormones. In the present research we investigated the possible role of oxytocin, one of the two principal neurohypophysial hormones, in the mediation of ANP release. Oxytocin (1-10 nmol) injected i.p. caused significant, dose-dependent increases in urinary osmolality, natriuresis, and kaliuresis. A delayed antidiuretic effect was also observed. Plasma ANP concentrations increased nearly 4-fold (P < 0.01) 20 min after i.p. oxytocin (10 nmol), but there was no change in plasma ANP values in control rats. When oxytocin (1 or 10 nmol) was injected i.v., it also induced a dose-related increase in plasma ANP at 5 min (P < 0.001). BVE by intra-atrial injection of isotonic saline induced a rapid (5 min postinjection) increase in plasma oxytocin and ANP concentrations and a concomitant decrease in plasma arginine vasopressin concentration. Results were similar with hypertonic volume expansion, except that this induced a transient (5 min) increase in plasma arginine vasopressin. The findings are consistent with the hypothesis that baroreceptor activation of the central nervous system by BVE stimulates the release of oxytocin from the neurohypophysis. This oxytocin then circulates to the right atrium to induce release of ANP, which circulates to the kidney and induces natriuresis and diuresis, which restore body fluid volume to normal levels.