3 resultados para mental processes

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used event-related functional MRI to investigate the neural bases of two categories of mental processes believed to contribute to performance of an alphabetization working memory task: memory storage and memory manipulation. Our delayed-response tasks required memory for the identity and position-in-the-display of items in two- or five-letter memory sets (to identify load-sensitive regions) or memory for the identity and relative position-in-the-alphabet of items in five-letter memory sets (to identify manipulation-sensitive regions). Results revealed voxels in the left perisylvian cortex of five of five subjects showing load sensitivity (as contrasted with alphabetization-sensitive voxels in this region in only one subject) and voxels of dorsolateral prefrontal cortex in all subjects showing alphabetization sensitivity (as contrasted with load-sensitive voxels in this region in two subjects). This double dissociation was reliable at the group level. These data are consistent with the hypothesis that the nonmnemonic executive control processes that can contribute to working memory function are primarily prefrontal cortex-mediated whereas mnemonic processes necessary for working memory storage are primarily posteriorly mediated. More broadly, they support the view that working memory is a faculty that arises from the coordinated interaction of computationally and neuroanatomically dissociable processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Memory is one of the most fundamental mental processes. Neuroscientists study this process by using extremely diverse strategies. Two different approaches aimed at understanding learning and memory were introduced in this symposium. The first focuses on the roles played by synaptic plasticity, especially in long-term depression in the cerebellum in motor learning, and its regulatory mechanism. The second approach uses an elegant chick-quail transplantation system on defined brain regions to study how neural populations interact in development to form behaviorally important neural circuits and to elucidate neurobiological correlates of perceptual and motor predispositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local translation of proteins in distal dendrites is thought to support synaptic structural plasticity. We have previously shown that metabotropic glutamate receptor (mGluR1) stimulation initiates a phosphorylation cascade, triggering rapid association of some mRNAs with translation machinery near synapses, and leading to protein synthesis. To determine the identity of these mRNAs, a cDNA library produced from distal nerve processes was used to screen synaptic polyribosome-associated mRNA. We identified mRNA for the fragile X mental retardation protein (FMRP) in these processes by use of synaptic subcellular fractions, termed synaptoneurosomes. We found that this mRNA associates with translational complexes in synaptoneurosomes within 1–2 min after mGluR1 stimulation of this preparation, and we observed increased expression of FMRP after mGluR1 stimulation. In addition, we found that FMRP is associated with polyribosomal complexes in these fractions. In vivo, we observed FMRP immunoreactivity in spines, dendrites, and somata of the developing rat brain, but not in nuclei or axons. We suggest that rapid production of FMRP near synapses in response to activation may be important for normal maturation of synaptic connections.