37 resultados para membranes
em National Center for Biotechnology Information - NCBI
Resumo:
Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.
Resumo:
The accumulation of β-amyloid peptides (Aβ) into senile plaques is one of the hallmarks of Alzheimer disease. Aggregated Aβ is toxic to cells in culture and this has been considered to be the cause of neurodegeneration that occurs in the Alzheimer disease brain. The discovery of compounds that prevent Aβ toxicity may lead to a better understanding of the processes involved and ultimately to possible therapeutic drugs. Low nanomolar concentrations of Aβ1-42 and the toxic fragment Aβ25-35 have been demonstrated to render cells more sensitive to subsequent insults as manifested by an increased sensitivity to formazan crystals following MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction. Formation of the toxic β-sheet conformation by Aβ peptides is increased by negatively charged membranes. Here we demonstrate that phloretin and exifone, dipolar compounds that decrease the effective negative charge of membranes, prevent association of Aβ1-40 and Aβ25-35 to negatively charged lipid vesicles and Aβ induced cell toxicity. These results suggest that Aβ toxicity is mediated through a nonspecific physicochemical interaction with cell membranes.
Resumo:
Heterotrimeric G proteins (peripheral proteins) conduct signals from membrane receptors (integral proteins) to regulatory proteins localized to various cellular compartments. They are in excess over any G protein-coupled receptor type on the cell membrane, which is necessary for signal amplification. These facts account for the large number of G protein molecules bound to membrane lipids. Thus, the protein-lipid interactions are crucial for their cellular localization, and consequently for signal transduction. In this work, the binding of G protein subunits to model membranes (liposomes), formed with defined membrane lipids, has been studied. It is shown that although G protein α-subunits were able to bind to lipid bilayers, the presence of nonlamellar-prone phospholipids (phosphatidylethanolamines) enhanced their binding to model membranes. This mechanism also appears to be used by other (structurally and functionally unrelated) peripheral proteins, such as protein kinase C and the insect protein apolipophorin III, indicating that it could constitute a general mode of protein-lipid interactions, relevant in the activity and translocation of some peripheral (amphitropic) proteins from soluble to particulate compartments. Other factors, such as the presence of cholesterol or the vesicle surface charge, also modulated the binding of the G protein subunits to lipid bilayers. Conversely, the binding of G protein-coupled receptor kinase 2 and the G protein β-subunit to liposomes was not increased by hexagonally prone lipids. Their distinct interactions with membrane lipids may, in part, explain the different cellular localizations of all of these proteins during the signaling process.
Resumo:
The EPR spectra of spin-labeled lipid chains in fully hydrated bilayer membranes of dimyristoyl phosphatidylcholine containing 40 mol % of cholesterol have been studied in the liquid-ordered phase at a microwave radiation frequency of 94 GHz. At such high field strengths, the spectra should be optimally sensitive to lateral chain ordering that is expected in the formation of in-plane domains. The high-field EPR spectra from random dispersions of the cholesterol-containing membranes display very little axial averaging of the nitroxide g-tensor anisotropy for lipids spin labeled toward the carboxyl end of the sn-2 chain (down to the 8-C atom). For these positions of labeling, anisotropic 14N-hyperfine splittings are resolved in the gzz and gyy regions of the nonaxial EPR spectra. For positions of labeling further down the lipid chain, toward the terminal methyl group, the axial averaging of the spectral features systematically increases and is complete at the 14-C atom position. Concomitantly, the time-averaged 〈Azz〉 element of the 14N-hyperfine tensor decreases, indicating that the axial rotation at the terminal methyl end of the chains arises from correlated torsional motions about the bonds of the chain backbone, the dynamics of which also give rise to a differential line broadening of the 14N-hyperfine manifolds in the gzz region of the spectrum. These results provide an indication of the way in which lateral ordering of lipid chains in membranes is induced by cholesterol.
Resumo:
It was previously assumed that the import of cytoplasmically synthesized precursor proteins into mitochondria occurs through a single structure spanning both outer and inner membranes at contact sites. Based on recent findings, however, the two membranes appear to contain independent translocation elements that reversibly cooperate during protein import. This feature makes it difficult to generate a means of isolating a fully integrated and functional translocation complex. To study these independent translocases in vitro and in vivo, we have constructed a chimeric protein consisting of an N-terminal authentic mitochondrial precursor (delta1-pyrroline-5-carboxylate dehydrogenase) linked, through glutathione S-transferase, to IgG binding domains derived from staphylococcal protein A. This construct becomes trapped en route to the matrix, spanning both outer and inner membranes in such a way that the entire signal-less delta1-pyrroline-5-carboxylate dehydrogenase moiety reaches the matrix, while only the folded protein A domain remains outside. During in vivo import of this precursor, outer and inner membranes of yeast mitochondria become progressively “zippered” together, forming long stretches of close contact. Using this novel intermediate, the outer and inner mitochondrial membrane channels, which normally interact only transiently, can be tightly joined (both in vitro and in vivo), forming a stable association. This suggests a method for isolating the functional translocation complex as a single entity.
Resumo:
Most mitochondrial proteins are imported into mitochondria through transmembrane channels composed largely, and perhaps exclusively, of proteins. We have determined the effective internal diameter of the protein import channel in the mitochondrial outer membrane to be between 20 Å and 26 Å during translocation. The diameter of the import channel in the inner membrane is smaller than the diameter of the outer membrane import channel. These results were obtained by measuring the effect of rigid steric bulk introduced into precursor proteins on import.
Resumo:
Recent reports have demonstrated beneficial effects of proinsulin C-peptide in the diabetic state, including improvements of kidney and nerve function. To examine the background to these effects, C-peptide binding to cell membranes has been studied by using fluorescence correlation spectroscopy. Measurements of ligand–membrane interactions at single-molecule detection sensitivity in 0.2-fl confocal volume elements show specific binding of fluorescently labeled C-peptide to several human cell types. Full saturation of the C-peptide binding to the cell surface is obtained at low nanomolar concentrations. Scatchard analysis of binding to renal tubular cells indicates the existence of a high-affinity binding process with Kass > 3.3 × 109 M−1. Addition of excess unlabeled C-peptide is accompanied by competitive displacement, yielding a dissociation rate constant of 4.5 × 10−4 s−1. The C-terminal pentapeptide also displaces C-peptide bound to cell membranes, indicating that the binding occurs at this segment of the ligand. Nonnative d-C-peptide and a randomly scrambled C-peptide do not compete for binding with the labeled C-peptide, nor were crossreactions observed with insulin, insulin-like growth factor (IGF)-I, IGF-II, or proinsulin. Pretreatment of cells with pertussis toxin, known to modify receptor-coupled G proteins, abolishes the binding. It is concluded that C-peptide binds to specific G protein-coupled receptors on human cell membranes, thus providing a molecular basis for its biological effects.
Resumo:
Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.
Resumo:
The Saccharomyces cerevisiae myosin-V, Myo2p, has been implicated in the polarized movement of several organelles and is essential for yeast viability. We have shown previously that Myo2p is required for the movement of a portion of the lysosome (vacuole) into the bud and consequently for proper inheritance of this organelle during cell division. Class V myosins have a globular carboxyl terminal tail domain that is proposed to mediate localization of the myosin, possibly through interaction with organelle-specific receptors. Here we describe a myo2 allele whose phenotypes support this hypothesis. vac15–1/myo2–2 has a single mutation in this globular tail domain, causing defects in vacuole movement and inheritance. Although a portion of wild-type Myo2p fractionates with the vacuole, the myo2–2 gene product does not. In addition, the mutant protein does not concentrate at sites of active growth, the predominant location of wild-type Myo2p. Although deletion of the tail domain is lethal, the myo2–2 gene product retains the essential functions of Myo2p. Moreover, myo2–2 does not cause the growth defects and lethal genetic interactions seen in myo2–66, a mutant defective in the actin-binding domain. These observations suggest that the myo2–2 mutation specifically disrupts interactions with selected myosin receptors, namely those on the vacuole membrane and those at sites of polarized growth.
Resumo:
The finding that ADP-ribosylation factor (ARF) can activate phospholipase D has led to debate as to whether ARF recruits coat proteins through direct binding or indirectly by catalytically increasing phosphatidic acid production. Here we test critical aspects of these hypotheses. We find that Golgi membrane phosphatidic acid levels do not rise—in fact they decline—during cell-free budding reactions. We confirm that the level of membrane-bound ARF can be substantially reduced without compromising coat assembly [Ktistakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C. & Roth, M. G. (1996) J. Cell Biol. 134, 295–306], but find that under all conditions, ARF is present on the Golgi membrane in molar excess over bound coatomer. These results do not support the possibility that the activation of coat assembly by ARF is purely catalytic, and they are consistent with ARF forming direct interactions with coatomer. We suggest that ARF, like many other G proteins, is a multifunctional protein with roles in trafficking and phospholipid signaling.
Resumo:
Peroxynitrite (ONOO−) is a potent oxidant implicated in a number of pathophysiological processes. The activity of ONOO− is related to its accessibility to biological targets before its spontaneous decomposition (t1/2 ≈ 1 s at pH 7.4, 37°C). Using model phospholipid vesicular systems and manganese porphyrins as reporter molecules, we demonstrated that ONOO− freely crosses phospholipid membranes. The calculated permeability coefficient for ONOO− is ≈8.0 × 10−4 cm⋅s−1, which compares well with that of water and is ≈400 times greater than that of superoxide. We suggest that ONOO− is a significant biological effector molecule not only because of its reactivity but also because of its high diffusibility.
Resumo:
Efforts to identify the specific components of the mammalian inner ear have been hampered by the small number of neuroepithelial cells and the variety of supporting cells. To circumvent these difficulties, we used a PCR-based subtractive method on cDNA from 2-day-old mouse cochlea. A cDNA encoding a predicted 2910-amino acid protein related to mucin has been isolated. Several lines of evidence indicate, however, that this protein does not undergo the O-glycosylation characteristic to mucins. As confirmed by immunocytochemistry and biochemical experiments, this protein is specific to the inner ear. Immunohistofluorescence labeling showed that this protein is a component of all the acellular membranes of the inner ear: i.e., the tectorial membrane of the cochlea, the otoconial and accessory membranes of the utricule and saccule, the cupula of the semicircular canals, and a previously undescribed acellular material covering the otoconia of the saccule. The protein has been named otogelin with reference to its localization. A variety of nonsensory cells located underneath these membranes could be identified as synthesizing otogelin. Finally, this study revealed a maturation process of the tectorial membrane, as evidenced by the progressive organization of otogelin labeling into thick and spaced radial fiber-like structures.
Resumo:
Zinc transporter-3 (ZnT-3), a member of a growing family of mammalian zinc transporters, is expressed in regions of the brain that are rich in histochemically reactive zinc (as revealed by the Timm’s stain), including entorhinal cortex, amygdala, and hippocampus. ZnT-3 protein is most abundant in the zinc-enriched mossy fibers that project from the dentate granule cells to hilar and CA3 pyramidal neurons. We show here by electron microscopy that ZnT-3 decorates the membranes of all clear, small, round synaptic vesicles (SVs) in the mossy fiber boutons of both mouse and monkey. Furthermore, up to 60–80% of these SVs contain Timm’s-stainable zinc. The coincidence of ZnT-3 on the membranes of SVs that accumulate zinc, and its homology with known zinc transporters, suggest that ZnT-3 is responsible for the transport of zinc into SVs, and hence for the ability of these neurons to release zinc upon excitation.
Resumo:
The GTP-binding protein ADP-ribosylation factor (ARF) initiates clathrin-coat assembly at the trans-Goli network (TGN) by generating high-affinity membrane-binding sites for the AP-1 adaptor complex. Both transmembrane proteins, which are sorted into the assembling coated bud, and novel docking proteins have been suggested to be partners with GTP-bound ARF in generating the AP-1-docking sites. The best characterized, and probably the major transmembrane molecules sorted into the clathrin-coated vesicles that form on the TGN, are the mannose 6-phosphate receptors (MPRs). Here, we have examined the role of the MPRs in the AP-1 recruitment process by comparing fibroblasts derived from embryos of either normal or MPR-negative animals. Despite major alterations to the lysosome compartment in the MPR-deficient cells, the steady-state distribution of AP-1 at the TGN is comparable to that of normal cells. Golgi-enriched membranes prepared from the receptor-negative cells also display an apparently normal capacity to recruit AP-1 in vitro in the presence of ARF and either GTP or GTPγS. The AP-1 adaptor is recruited specifically onto the TGN and not onto the numerous abnormal membrane elements that accumulate within the MPR-negative fibroblasts. AP-1 bound to TGN membranes from either normal or MPR-negative fibroblasts is fully resistant to chemical extraction with 1 M Tris-HCl, pH 7, indicating that the adaptor binds to both membrane types with high affinity. The only difference we do note between the Golgi prepared from the MPR-deficient cells and the normal cells is that AP-1 recruited onto the receptor-lacking membranes in the presence of ARF1·GTP is consistently more resistant to extraction with Tris. Because sensitivity to Tris extraction correlates well with nucleotide hydrolysis, this finding might suggest a possible link between MPR sorting and ARF GAP regulation. We conclude that the MPRs are not essential determinants in the initial steps of AP-1 binding to the TGN but, instead, they may play a regulatory role in clathrin-coated vesicle formation by affecting ARF·GTP hydrolysis.
Resumo:
Src family protein-tyrosine kinases are implicated in signaling via glycosylphosphatidylinositol (GPI)-anchored receptors. Both kinds of molecules reside in opposite leaflets of the same sphingolipid-enriched microdomains in the lymphocyte plasma membrane without making direct contact. Under detergent-free conditions, we isolated a GPI-enriched plasma membrane fraction, also containing transmembrane proteins, selectively associated with sphingolipid microdomains. Nonionic detergents released the transmembrane proteins, yielding core sphingolipid microdomains, limited amounts of which could also be obtained by detergent-free subcellular fractionation. Protein-tyrosine kinase activity in membranes containing both GPI-anchored and transmembrane proteins was much lower than in core sphingolipid microdomains but was strongly reactivated by nonionic detergents. The inhibitory mechanism acting on Lck and Fyn kinases in these membranes was independent of the protein-tyrosine phosphatase CD45 and was characterized as a mixed, noncompetitive one. We propose that in lymphocyte plasma membranes, Lck and Fyn kinases exhibit optimal activity when juxtaposed to the GPI- and sphingolipid-enriched core microdomains but encounter inhibitory conditions in surrounding membrane areas that are rich in glycerophospholipids and contain additional transmembrane proteins.