13 resultados para measure of non-exchangeability

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a new mAb raised against the mouse neuroepithelium, we have identified and cDNA-cloned prominin, an 858-amino acid-containing, 115-kDa glycoprotein. Prominin is a novel plasma membrane protein with an N-terminal extracellular domain, five transmembrane segments flanking two short cytoplasmic loops and two large glycosylated extracellular domains, and a cytoplasmic C-terminal domain. DNA sequences from Caenorhabditis elegans predict the existence of a protein with the same features, suggesting that prominin is conserved between vertebrates and invertebrates. Prominin is found not only in the neuroepithelium but also in various other epithelia of the mouse embryo. In the adult mouse, prominin has been detected in the brain ependymal layer, and in kidney tubules. In these epithelia, prominin is specific to the apical surface, where it is selectively associated with microvilli and microvilli-related structures. Remarkably, upon expression in CHO cells, prominin is preferentially localized to plasma membrane protrusions such as filopodia, lamellipodia, and microspikes. These observations imply that prominin contains information to be targeted to, and/or retained in, plasma membrane protrusions rather than the planar cell surface. Moreover, our results show that the mechanisms underlying targeting of membrane proteins to microvilli of epithelial cells and to plasma membrane protrusions of non-epithelial cells are highly related.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One approach to understanding common human diseases is to determine the genetic defects responsible for similar diseases in animal models and place those defective genes in their corresponding biochemical pathways. Our laboratory is working with an animal model for human rheumatoid arthritis called collagen-induced arthritis (CIA). We are particularly interested in determining the location of disease-predisposing loci. To that end, we performed experiments to localize susceptibility loci for CIA in an F2 cross between the highly susceptible mouse strain DBA/1j and the highly resistant mouse strain SWR/j. Specifically, a quantitative trait locus analysis was performed to localize regions of the mouse genome responsible for susceptibility/severity to CIA. One susceptibility locus, Cia1 in the major histocompatibility locus, had been identified previously. Two additional loci were detected in our analysis that contribute to CIA severity (Cia2, Cia3) on chromosomes 2 and 6. A third locus was detected that contributes to the age of onset of the disease. This locus (Cia4) was located on chromosome 2 and was linked to the same region as Cia2. Determining the identity of these loci may provide insights into the etiology of human rheumatoid arthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells of vertebrates remove DNA double-strand breaks (DSBs) from their genome predominantly utilizing a fast, DNA-PKcs-dependent form of non-homologous end joining (D-NHEJ). Mutants with inactive DNA-PKcs remove the majority of DNA DSBs utilizing a slow, DNA-PKcs-independent pathway that does not utilize genes of the RAD52 epistasis group, is error-prone and can therefore be classified as a form of NHEJ (termed basic or B-NHEJ). We studied the role of DNA ligase IV in these pathways of NHEJ. Although biochemical studies show physical and functional interactions between the DNA-PKcs/Ku and the DNA ligase IV/Xrcc4 complexes suggesting operation within the same pathway, genetic evidence to support this notion is lacking in mammalian cells. Primary human fibroblasts (180BR) with an inactivating mutation in DNA ligase IV, rejoined DNA DSBs predominantly with slow kinetics similar to those observed in cells deficient in DNA-PKcs, or in wild-type cells treated with wortmannin to inactivate DNA-PK. Treatment of 180BR cells with wortmannin had only a small effect on DNA DSB rejoining and no effect on cell radiosensitivity to killing although it sensitized control cells to 180BR levels. This is consistent with DNA ligase IV functioning as a component of the D-NHEJ, and demonstrates the unperturbed operation of the DNA-PKcs-independent pathway (B-NHEJ) at significantly reduced levels of DNA ligase IV. In vitro, extracts of 180BR cells supported end joining of restriction endonuclease-digested plasmid to the same degree as extracts of control cells when tested at 10 mM Mg2+. At 0.5 mM Mg2+, where only DNA ligase IV is expected to retain activity, low levels of end joining (∼10% of 10 mM) were seen in the control but there was no detectable activity in 180BR cells. Antibodies raised against DNA ligase IV did not measurably inhibit end joining at 10 mM Mg2+ in either cell line. Thus, in contrast to the situation in vivo, end joining in vitro is dominated by pathways with properties similar to B-NHEJ that do not display a strong dependence on DNA ligase IV, with D-NHEJ retaining only a limited contribution. The implications of these observations to studies of NHEJ in vivo and in vitro are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allelic association between pairs of loci is derived in terms of the association probability ρ as a function of recombination θ, effective population size N, linear systematic pressure v, and time t, predicting both ρrt, the decrease of association from founders and ρct, the increase by genetic drift, with ρt = ρrt + ρct. These results conform to the Malecot equation, with time replaced by distance on the genetic map, or on the physical map if recombination in the region is uniform. Earlier evidence suggested that ρ is less sensitive to variations in marker allele frequencies than alternative metrics for which there is no probability theory. This robustness is confirmed for six alternatives in eight samples. In none of these 48 tests was the residual variance as small as for ρ. Overall, efficiency was less than 80% for all alternatives, and less than 30% for two of them. Efficiency of alternatives did not increase when information was estimated simultaneously. The swept radius within which substantial values of ρ are conserved lies between 385 and 893 kb, but deviation of parameters between measures is enormously significant. The large effort now being devoted to allelic association has little value unless the ρ metric with the strongest theoretical basis and least sensitivity to marker allele frequencies is used for mapping of marker association and localization of disease loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After ionising radiation double-strand breaks (dsb) are lethal if not repaired or misrepaired. Cell killing is greatly enhanced by hyperthermia and it is questioned here whether heat not only affects dsb repair capacity but also fidelity in a chromosomal context. dsb repair experiments were designed so as to mainly score non-homologous end joining, while homologous recombination was largely precluded. Human male G0 fibroblasts were either preheated (45°C, 20 min) or not before X-irradiation. dsb induction and repair were measured by conventional gel electrophoresis and an assay combining restriction digestion using a rare cutting enzyme (NotI) and Southern hybridisation, which detects large chromosomal rearrangements (>100 kb). dsb induction rate in an X-chromosomal NotI fragment was 4.8 × 10–3 dsb/Gy/Mb. Similar values were found for the genome overall and also when cells were preheated. After 50 Gy, fibroblasts were competent to largely restore the original restriction fragment size. Five per cent of dsb remained non-rejoined and 14% were misrejoined. Correct restitution of restriction fragments occurred preferably during the first hour but continued at a slow rate for 12–16 h. In addition, dsb appeared to misrejoin throughout the entire repair period. After hyperthermia the fractions of non-rejoined and misrejoined dsb were similarly increased to 13 and 51%, respectively. It is suggested that heat increases the probability of dsb being incorrectly rejoined but it is not likely to interfere with one dsb repair pathway in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested amnesic patients, patients with frontal lobe lesions, and control subjects with the deferred imitation task, a nonverbal test used to demonstrate memory abilities in human infants. On day 1, subjects were given sets of objects to obtain a baseline measure of their spontaneous performance of target actions. Then different event sequences were modeled with the object sets. On day 2, the objects were given to the subjects again, first without any instructions to imitate the sequences, and then with explicit instructions to imitate the actions exactly as they had been modeled. Control subjects and frontal lobe patients reproduced the events under both uninstructed and instructed conditions. In contrast, performance by the amnesic patients did not significantly differ from that of a second control group who had the same opportunities to handle the objects but were not shown the modeled actions. These findings suggest that deferred imitation is dependent on the brain structures essential for declarative memory that are damaged in amnesia, and they support the view that infants who imitate actions after long delays have an early capacity for long-term declarative memory.