41 resultados para matrix associated laser desorption ionization mass spectrometry

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to analyzing single-nucleotide polymorphisms (SNPs) found in the human genome has been developed that couples a recently developed invasive cleavage assay for nucleic acids with detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The invasive cleavage assay is a signal amplification method that enables the analysis of SNPs by MALDI-TOF MS directly from human genomic DNA without the need for initial target amplification by PCR. The results presented here show the successful genotyping by this approach of twelve SNPs located randomly throughout the human genome. Conventional Sanger sequencing of these SNP positions confirmed the accuracy of the MALDI-TOF MS analysis results. The ability to unambiguously detect both homozygous and heterozygous genotypes is clearly demonstrated. The elimination of the need for target amplification by PCR, combined with the inherently rapid and accurate nature of detection by MALDI-TOF MS, gives this approach unique and significant advantages in the high-throughput genotyping of large numbers of SNPs, useful for locating, identifying, and characterizing the function of specific genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasers emitting in the ultraviolet wavelength range of 260-360 nm are almost exclusively used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of macromolecules. Reports about the use of lasers emitting in the infrared first appeared in 1990/1991. In contrast to MALDI in the ultraviolet, a very limited number of reports on IR-MALDI have since been published. Several matrices have been identified for infrared MALDI yielding spectra of a quality comparable to those obtained in the ultraviolet. Water (ice) was recognized early as a potential matrix because of its strong O-H stretching mode near 3 microm. Interest in water as matrix derives primarily from the fact that it is the major constituent of most biological tissues. If functional as matrix, it might allow the in situ analysis of macromolecular constituents in frozen cell sections without extraction or exchanging the water. We present results that show that IR-MALDI of lyophilized proteins, air dried protein solutions, or protein crystals up to a molecular mass of 30 kDa is possible without the addition of any separate matrix. Samples must be frozen to retain a sufficient fraction of the water of hydration in the vacuum. The limited current sensitivity, requiring at least 10 pmol of protein for a successful analysis needs to be further improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionization (MALDI) time of flight mass spectrometry was used to detect and order DNA fragments generated by Sanger dideoxy cycle sequencing. This was accomplished by improving the sensitivity and resolution of the MALDI method using a delayed ion extraction technique (DE-MALDI). The cycle sequencing chemistry was optimized to produce as much as 100 fmol of each specific dideoxy terminated fragment, generated from extension of a 13-base primer annealed on 40- and 50-base templates. Analysis of the resultant sequencing mixture by DE-MALDI identified the appropriate termination products. The technique provides a new non-gel-based method to sequence DNA which may ultimately have considerable speed advantages over traditional methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methyl chloride transferase catalyzes the synthesis of methyl chloride from S-adenosine-l-methionine and chloride ion. This enzyme has been purified 2,700-fold to homogeneity from Batis maritima, a halophytic plant that grows abundantly in salt marshes. The purification of the enzyme was accomplished by a combination of ammonium sulfate fractionation, column chromatography on Sephadex G100 and adenosine-agarose, and TSK-250 size-exclusion HPLC. The purified enzyme exhibits a single band on SDS/PAGE with a molecular mass of approximately 22.5 kDa. The molecular mass of the purified enzyme was 22,474 Da as determined by matrix-associated laser desorption ionization mass spectrometry. The methylase can function in either a monomeric or oligomeric form. A 32-aa sequence of an internal fragment of the methylase was determined (GLVPGCGGGYDVVAMANPER FMVGLDIXENAL, where X represents unknown residue) by Edman degradation, and a full-length cDNA of the enzyme was obtained by rapid amplification of cDNA ends–PCR amplification of cDNA oligonucleotides. The cDNA gene contains an ORF of 690 bp encoding an enzyme of 230 aa residues having a predicted molecular mass of 25,761 Da. The disparity between the observed and calculated molecular mass suggests that the methylase undergoes posttranslational cleavage, possibly during purification. Sequence homologies suggest that the B. maritima methylase defines a new family of plant methyl transferases. A possible function for this novel methylase in halophytic plants is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established a differential peptide display method, based on a mass spectrometric technique, to detect peptides that show semiquantitative changes in the neurointermediate lobe (NIL) of individual rats subjected to salt-loading. We employed matrix-assisted laser desorption/ionization mass spectrometry, using a single-reference peptide in combination with careful scanning of the whole crystal rim of the matrix-analyte preparation, to detect in a semiquantitative manner the molecular ions present in the unfractionated NIL homogenate. Comparison of the mass spectra generated from NIL homogenates of salt-loaded and control rats revealed a selective and significant decrease in the intensities of several molecular ion species of the NIL homogenates from salt-loaded rats. These ion species, which have masses that correspond to the masses of oxytocin, vasopressin, neurophysins, and an unidentified putative peptide, were subsequently chemically characterized. We confirmed that the decreased molecular ion species are peptides derived exclusively from propressophysin and prooxyphysin (i.e., oxytocin, vasopressin, and various neurophysins). The putative peptide is carboxyl-terminal glycopeptide. The carbohydrate moiety of the latter peptide was determined by electrospray tandem MS as bisected biantennary Hex3HexNAc5Fuc. This posttranslational modification accounts for the mass difference between the predicted mass of the peptide based on cDNA studies and the measured mass of the mature peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor (FGF) 1 and FGF-2 are prototypic members of the FGF family, which to date comprises at least 18 members. Surprisingly, even though FGF-1 and FGF-2 share more than 80% sequence similarity and an identical structural fold, these two growth factors are biologically very different. FGF-1 and FGF-2 differ in their ability to bind isoforms of the FGF receptor family as well as the heparin-like glycosaminoglycan (HLGAG) component of proteoglycans on the cell surface to initiate signaling in different cell types. Herein, we provide evidence for one mechanism by which these two proteins could differ biologically. Previously, it has been noted that FGF-1 and FGF-2 can oligomerize in the presence of HLGAGs. Therefore, we investigated whether FGF-1 and FGF-2 oligomerize by the same mechanism or by a different one. Through a combination of matrix-assisted laser desorption ionization mass spectrometry and chemical crosslinking, we show here that, under identical conditions, FGF-1 and FGF-2 differ in the degree and kind of oligomerization. Furthermore, an extensive analysis of FGF-1 and FGF-2 uncomplexed and HLGAG complexed crystal structures enables us to readily explain why FGF-2 forms sequential oligomers whereas FGF-1 forms only dimers. FGF-2, which possesses an interface capable of protein association, forms a translationally related oligomer, whereas FGF-1, which does not have this interface, forms only a symmetrically related dimer. Taken together, these data show that FGF-1 and FGF-2, despite their sequence homology, differ in their mechanism of oligomerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic elongation factor 1α (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P]Pi, [14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania resistant to arsenicals and antimonials extrude arsenite. Previous results of arsenite uptake into plasma membrane-enriched vesicles suggested that the transported species is a thiol adduct of arsenite. In this paper, we demonstrate that promastigotes of arsenite-resistant Leishmania tarentolae have increased levels of intracellular thiols. High-pressure liquid chromatography of the total thiols showed that a single peak of material was elevated almost 40-fold. The major species in this peak was identified by matrix-assisted laser desorption/ionization mass spectrometry as N1,N8-bis-(glutathionyl)spermidine (trypanothione). The trypanothione adduct of arsenite was effectively transported by the As-thiol pump. No difference in pump activity was observed in wild type and mutants. A model for drug resistance is proposed in which Sb(V)/As(V)-containing compounds, including the antileishmanial drug Pentostam, are reduced intracellularly to Sb(III)/As(III), conjugated to trypanothione, and extruded by the As-thiol pump. The rate-limiting step in resistance is proposed to be formation of the metalloid-thiol pump substrates, so that increased synthesis of trypanothione produces resistance. Increased synthesis of the substrate rather than an increase in the number of pump molecules is a novel mechanism for drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of matrix-assisted laser desorption/ionization and electrospray ionization, mass spectrometry has played an increasingly important role in protein functional characterization, identification, and structural analysis. Expanding this role, desorption/ionization on silicon (DIOS) is a new approach that allows for the analysis of proteins and related small molecules. Despite the absence of matrix, DIOS-MS yields little or no fragmentation and is relatively tolerant of moderate amounts of contaminants commonly found in biological samples. Here, functional assays were performed on an esterase, a glycosidase, a lipase, as well as exo- and endoproteases by using enzyme-specific substrates. Enzyme activity also was monitored in the presence of inhibitors, successfully demonstrating the ability of DIOS to be used as an inhibitor screen. Because DIOS is a matrix-free desorption technique, it also can be used as a platform for multiple analyses to be performed on the same protein. This unique advantage was demonstrated with acetylcholine esterase for qualitative and quantitative characterization and also by its subsequent identification directly from the DIOS platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2) or phosphotyrosine interaction domains (PID). Additionally, several cytoplasmic proteins that may or may not associate with the receptor undergo tyrosine phosphorylation. To identify several components of the EGFR signaling pathway in a single step, we have immunoprecipitated molecules that are tyrosine phosphorylated in response to EGF and analyzed them by one-dimensional gel electrophoresis followed by mass spectrometry. Combining matrix-assisted laser desorption/ionization (MALDI) and nanoelectrospray tandem mass spectrometry (MS/MS) led to the identification of nine signaling molecules, seven of which had previously been implicated in EGFR signaling. Several of these molecules were identified from low femtomole levels of protein loaded onto the gel. We identified Vav-2, a recently discovered guanosine nucleotide exchange factor that is expressed ubiquitously, as a substrate of the EGFR. We demonstrate that Vav-2 is phosphorylated on tyrosine residues in response to EGF and associates with the EGFR in vivo. Binding of Vav-2 to the EGFR is mediated by the SH2 domain of Vav-2. In keeping with its ubiquitous expression, Vav-2 seems to be a general signaling molecule, since it also associates with the platelet-derived growth factor (PDGF) receptor and undergoes tyrosine phosphorylation in fibroblasts upon PDGF stimulation. The strategy suggested here can be used for routine identification of downstream components of cell surface receptors in mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The larger of two diuretic hormones of the tobacco hornworm, Manduca sexta, (Mas-DH) is a peptide of 41 residues. It is one of a family of seven currently known insect diuretic hormones that are similar to the corticotropin-releasing factor–urotensin–sauvagine family of peptides. We investigated the possible inactivation of Mas-DH by incubating it in vitro with larval Malpighian tubules (Mt), the target organ of the hormone. The medium was analyzed, and degradation products were identified, using on-line microbore reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry (RPLC-ESI-MS). This sensitive technique allows identification of metabolites of Mas-DH (present at an initial level of ≈1 μM). An accurate Mr value for a metabolite is usually sufficient for unambiguous identification. Mas-DH is cleaved by Mt proteases initially at L29–R30 and R30–A31 under our assay conditions; some Mas-DH is also oxidized, apparently at M2 and M11. The proteolysis can be inhibited by 5 mM EDTA, suggesting that divalent metals are needed for peptide cleavage. The oxidation of the hormone can be inhibited by catalase or 1 mM methionine, indicating that H2O2 or related reactive oxygen species are responsible for the oxidative degradation observed. RPLC-ESI-MS is shown here to be an elegant and efficient method for studying peptide hormone metabolism resulting from unknown proteases and pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.