11 resultados para mathematical modeling of PTO
em National Center for Biotechnology Information - NCBI
Resumo:
An integrated understanding of molecular and developmental biology must consider the large number of molecular species involved and the low concentrations of many species in vivo. Quantitative stochastic models of molecular interaction networks can be expressed as stochastic Petri nets (SPNs), a mathematical formalism developed in computer science. Existing software can be used to define molecular interaction networks as SPNs and solve such models for the probability distributions of molecular species. This approach allows biologists to focus on the content of models and their interpretation, rather than their implementation. The standardized format of SPNs also facilitates the replication, extension, and transfer of models between researchers. A simple chemical system is presented to demonstrate the link between stochastic models of molecular interactions and SPNs. The approach is illustrated with examples of models of genetic and biochemical phenomena where the UltraSAN package is used to present results from numerical analysis and the outcome of simulations.
Resumo:
Convection in the tropics is observed to involve a wide-ranging hierarchy of scales from a few kilometers to the planetary scales and also has a profound impact on short-term climate. The mechanisms responsible for this behavior present a major unsolved problem. A promising emerging approach to address these issues is cloud-resolving modeling. Here a family of numerical models is introduced specifically to model the feedback of small-scale deep convection on tropical planetary waves and tropical circulation in a highly efficient manner compatible with the approach through cloud-resolving modeling. Such a procedure is also useful for theoretical purposes. The basic idea in the approach is to use low-order truncation in the meriodonal direction through Gauss–Hermite quadrature projected onto a simple discrete radiation condition. In this fashion, the cloud-resolving modeling of equatorially trapped planetary waves reduces to the solution of a small number of purely zonal two-dimensional wave systems along a few judiciously chosen meriodonal layers that are coupled only by some additional source terms. The approach is analyzed in detail with full mathematical rigor for linearized equatorial primitive equations with source terms.
Resumo:
Human preimplantation embryos exhibit high levels of apoptotic cells and high rates of developmental arrest during the first week in vitro. The relation between the two is unclear and difficult to determine by conventional experimental approaches, partly because of limited numbers of embryos. We apply a mixture of experiment and mathematical modeling to show that observed levels of cell death can be reconciled with the high levels of embryo arrest seen in the human only if the developmental competence of embryos is already established at the zygote stage, and environmental factors merely modulate this. This suggests that research on improving in vitro fertilization success rates should move from its current concentration on optimizing culture media to focus more on the generation of a healthy zygote and on understanding the mechanisms that cause chromosomal and other abnormalities during early cleavage stages.
Resumo:
The function of a protein generally is determined by its three-dimensional (3D) structure. Thus, it would be useful to know the 3D structure of the thousands of protein sequences that are emerging from the many genome projects. To this end, fold assignment, comparative protein structure modeling, and model evaluation were automated completely. As an illustration, the method was applied to the proteins in the Saccharomyces cerevisiae (baker’s yeast) genome. It resulted in all-atom 3D models for substantial segments of 1,071 (17%) of the yeast proteins, only 40 of which have had their 3D structure determined experimentally. Of the 1,071 modeled yeast proteins, 236 were related clearly to a protein of known structure for the first time; 41 of these previously have not been characterized at all.
Resumo:
The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.
Resumo:
We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.
Resumo:
A statistical modeling approach is proposed for use in searching large microarray data sets for genes that have a transcriptional response to a stimulus. The approach is unrestricted with respect to the timing, magnitude or duration of the response, or the overall abundance of the transcript. The statistical model makes an accommodation for systematic heterogeneity in expression levels. Corresponding data analyses provide gene-specific information, and the approach provides a means for evaluating the statistical significance of such information. To illustrate this strategy we have derived a model to depict the profile expected for a periodically transcribed gene and used it to look for budding yeast transcripts that adhere to this profile. Using objective criteria, this method identifies 81% of the known periodic transcripts and 1,088 genes, which show significant periodicity in at least one of the three data sets analyzed. However, only one-quarter of these genes show significant oscillations in at least two data sets and can be classified as periodic with high confidence. The method provides estimates of the mean activation and deactivation times, induced and basal expression levels, and statistical measures of the precision of these estimates for each periodic transcript.
Resumo:
To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.
Resumo:
In the past decade, tremendous advances in the state of the art of automatic speech recognition by machine have taken place. A reduction in the word error rate by more than a factor of 5 and an increase in recognition speeds by several orders of magnitude (brought about by a combination of faster recognition search algorithms and more powerful computers), have combined to make high-accuracy, speaker-independent, continuous speech recognition for large vocabularies possible in real time, on off-the-shelf workstations, without the aid of special hardware. These advances promise to make speech recognition technology readily available to the general public. This paper focuses on the speech recognition advances made through better speech modeling techniques, chiefly through more accurate mathematical modeling of speech sounds.
Resumo:
A hierarchy of enzyme-catalyzed positive feedback loops is examined by mathematical and numerical analysis. Four systems are described, from the simplest, in which an enzyme catalyzes its own formation from an inactive precursor, to the most complex, in which two sequential feedback loops act in a cascade. In the latter we also examine the function of a long-range feedback, in which the final enzyme produced in the second loop activates the initial step in the first loop. When the enzymes generated are subject to inhibition or inactivation, all four systems exhibit threshold properties akin to excitable systems like neuron firing. For those that are amenable to mathematical analysis, expressions are derived that relate the excitation threshold to the kinetics of enzyme generation and inhibition and the initial conditions. For the most complex system, it was expedient to employ numerical simulation to demonstrate threshold behavior, and in this case long-range feedback was seen to have two distinct effects. At sufficiently high catalytic rates, this feedback is capable of exciting an otherwise subthreshold system. At lower catalytic rates, where the long-range feedback does not significantly affect the threshold, it nonetheless has a major effect in potentiating the response above the threshold. In particular, oscillatory behavior observed in simulations of sequential feedback loops is abolished when a long-range feedback is present.
Resumo:
We demonstrate, by using mathematical modeling of cell division cycle (CDC) dynamics, a potential mechanism for precisely controlling the frequency of cell division and regulating the size of a dividing cell. Control of the cell cycle is achieved by artificially expressing a protein that reversibly binds and inactivates any one of the CDC proteins. In the simplest case, such as the checkpoint-free situation encountered in early amphibian embryos, the frequency of CDC oscillations can be increased or decreased by regulating the rate of synthesis, the binding rate, or the equilibrium constant of the binding protein. In a more complex model of cell division, where size-control checkpoints are included, we show that the same reversible binding reaction can alter the mean cell mass in a continuously dividing cell. Because this control scheme is general and requires only the expression of a single protein, it provides a practical means for tuning the characteristics of the cell cycle in vivo.