15 resultados para maternal-effect gene
em National Center for Biotechnology Information - NCBI
Resumo:
Recent investigations have shown that the maintenance of genomic imprinting of the murine insulin-like growth factor 2 (Igf2) gene involves at least two factors: the DNA (cytosine-5-)-methyltransferase activity, which is required to preserve the paternal specific expression of Igf2, and the H19 gene (lying 90 kb downstream of Igf2 gene), which upon inactivation leads to relaxation of the Igf2 imprint. It is not yet clear how these two factors are related to each other in the process of maintenance of Igf2 imprinting and, in particular, whether the latter is acting through cis elements or whether the H19 RNA itself is involved. By using Southern blots and the bisulfite genomic-sequencing technique, we have investigated the allelic methylation patterns (epigenotypes) of the Igf2 gene in two strains of mouse with distinct deletions of the H19 gene. The results show that maternal transmission of H19 gene deletions leads the maternal allele of Igf2 to adopt the epigenotype of the paternal allele and indicate that this phenomenon is influenced directly or indirectly by the H19 gene expression. More importantly, the bisulfite genomic-sequencing allowed us to show that the methylation pattern of the paternal allele of the Igf2 gene is affected in trans by deletions of the active maternal allele of the H19 gene. Selection during development for the appropriate expression of Igf2, dosage-dependent factors that bind to the Igf2 gene, or methylation transfer between the parental alleles could be involved in this trans effect.
Resumo:
The Caenorhabditis elegans maternal-effect sterile genes, mes-2, mes-3, mes-4, and mes-6, encode nuclear proteins that are essential for germ-line development. They are thought to be involved in a common process because their mutant phenotypes are similar. MES-2 and MES-6 are homologs of Enhancer of zeste and extra sex combs, both members of the Polycomb group of chromatin regulators in insects and vertebrates. MES-3 is a novel protein, and MES-4 is a SET-domain protein. To investigate whether the MES proteins interact and likely function as a complex, we performed biochemical analyses on C. elegans embryo extracts. Results of immunoprecipitation experiments indicate that MES-2, MES-3, and MES-6 are associated in a complex and that MES-4 is not associated with this complex. Based on in vitro binding assays, MES-2 and MES-6 interact directly, via the amino terminal portion of MES-2. Sucrose density gradient fractionation and gel filtration chromatography were performed to determine the Stokes radius and sedimentation coefficient of the MES-2/MES-3/MES-6 complex. Based on those two values, we estimate that the molecular mass of the complex is ≈255 kDa, close to the sum of the three known components. Our results suggest that the two C. elegans Polycomb group homologs (MES-2 and MES-6) associate with a novel partner (MES-3) to regulate germ-line development in C. elegans.
Resumo:
Aposematic signals that warn predators of the noxious qualities of prey gain their greatest selective advantage when predators have already experienced similar signals. Existing theory explains how such signals can spread through selective advantage after they are present at some critical frequency, but is unclear about how warning signals can be selectively advantageous when the trait is initially rare (i.e., when it first arises through mutation) and predators are naive. When aposematism is controlled by a maternal effect gene, the difficulty of initial rarity may be overcome. Unlike a zygotically expressed gene, a maternally expressed aposematism gene will be hidden from selection because it is not phenotypically expressed in the first individual with the mutation. Furthermore, the first individual carrying the new mutation will produce an entire family of aposematic offspring, thereby providing an immediate fitness advantage to this gene.
Resumo:
A genetic locus suppressing DNA underreplication in intercalary heterochromatin (IH) and pericentric heterochromatin (PH) of the polytene chromosomes of Drosophila melanogaster salivary glands, has been described. Found in the In(1)scV2 strain, the mutation, designated as Su(UR)ES, was located on chromosome 3L at position 34.8 and cytologically mapped to region 68A3-B4. A cytological phenotype was observed in the salivary gland chromosomes of larvae homozygous and hemizygous for Su(UR)ES: (i) in the IH regions, that normally are incompletely polytenized and so they often break to form “weak points,” underreplication is suppressed, breaks and ectopic contacts disappear; (ii) the degree of polytenization in PH grows higher. That is why the regions in chromosome arm basements, normally β-heterochromatic, acquire a distinct banding pattern, i.e., become euchromatic by morphological criteria; (iii) an additional bulk of polytenized material arises between the arms of chromosome 3 to form a fragment with a typical banding pattern. Chromosome 2 PH reveals additional α-heterochromatin. Su(UR)ES does not affect the viability, fertility, or morphological characters of the imago, and has semidominant expression in the heterozygote and distinct maternal effect. The results obtained provide evidence that the processes leading to DNA underreplication in IH and PH are affected by the same genetic mechanism.
Resumo:
Mutations in the human presenilin genes PS1 and PS2 cause early-onset Alzheimer’s disease. Studies in Caenorhabditis elegans and in mice indicate that one function of presenilin genes is to facilitate Notch-pathway signaling. Notably, mutations in the C. elegans presenilin gene sel-12 reduce signaling through an activated version of the Notch receptor LIN-12. To investigate the function of a second C. elegans presenilin gene hop-1 and to examine possible genetic interactions between hop-1 and sel-12, we used a reverse genetic strategy to isolate deletion alleles of both loci. Animals bearing both hop-1 and sel-12 deletions displayed new phenotypes not observed in animals bearing either single deletion. These new phenotypes—germ-line proliferation defects, maternal-effect embryonic lethality, and somatic gonad defects—resemble those resulting from a reduction in signaling through the C. elegans Notch receptors GLP-1 and LIN-12. Thus SEL-12 and HOP-1 appear to function redundantly in promoting Notch-pathway signaling. Phenotypic analyses of hop-1 and sel-12 single and double mutant animals suggest that sel-12 provides more presenilin function than does hop-1.
Resumo:
Understanding the effects of the external environment on bacterial gene expression can provide valuable insights into an array of cellular mechanisms including pathogenesis, drug resistance, and, in the case of Mycobacterium tuberculosis, latency. Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of differential gene expression currently must be performed either with large amounts of total RNA or rely on amplification techniques that can alter the proportional representation of individual mRNA sequences. We have developed an approach to study differences in bacterial mRNA expression that enables amplification by the PCR of a complex mixture of cDNA sequences in a reproducible manner that obviates the confounding effects of selected highly expressed sequences, e.g., ribosomal RNA. Differential expression using customized amplification libraries (DECAL) uses a library of amplifiable genomic sequences to convert total cellular RNA into an amplified probe for gene expression screens. DECAL can detect 4-fold differences in the mRNA levels of rare sequences and can be performed on as little as 10 ng of total RNA. DECAL was used to investigate the in vitro effect of the antibiotic isoniazid on M. tuberculosis, and three previously uncharacterized isoniazid-induced genes, iniA, iniB, and iniC, were identified. The iniB gene has homology to cell wall proteins, and iniA contains a phosphopantetheine attachment site motif suggestive of an acyl carrier protein. The iniA gene is also induced by the antibiotic ethambutol, an agent that inhibits cell wall biosynthesis by a mechanism that is distinct from isoniazid. The DECAL method offers a powerful new tool for the study of differential gene expression.
Resumo:
The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.
Resumo:
Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.
Resumo:
Although adaptive evolution is thought to depend primarily on mutations of small effect, major gene effects may underlie many of the important differences observed among species in nature. The Mexican axolotl (Ambystoma mexicanum) has a derived mode of development that is characterized by metamorphic failure (paedomorphosis), an adaptation for an entirely aquatic life cycle. By using an interspecific crossing design and genetic linkage analysis, a major quantitative trait locus for expression of metamorphosis was identified in a local map of amplified fragment length polymorphisms. These data are consistent with a major gene hypothesis for the evolution of paedomorphosis in A. mexicanum.
Resumo:
The database of imprinted genes and parent-of-origin effects in animals (http:// www.otago.ac.nz/IGC) is a collation of genes and phenotypes for which parent-of-origin effects have been reported. The database currently includes over 220 entries, which describe over 40 imprinted genes in human, mouse and other animals. In addition a wide variety of other parent-of-origin effects, such as transmission of human disease phenotypes, transmission of QTLs, uniparental disomies and interspecies crosses are recorded. Data are accessed through a search engine and references are hyperlinked to PubMed.
Resumo:
A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain.
Resumo:
To analyze the function of the 5' DNase I hypersensitive sites (HSs) of the locus control region (LCR) on beta-like globin gene expression, a 2.3-kb deletion of 5'HS3 or a 1.9-kb deletion of 5'HS2 was recombined into a beta-globin locus yeast artificial chromosome, and transgenic mice were produced. Deletion of 5'HS3 resulted in a significant decrease of epsilon-globin gene expression and an increase of gamma-globin gene expression in embryonic cells. Deletion of 5'HS2 resulted in only a small decrease in expression of epsilon-, gamma-, and beta-globin mRNA at all stages of development. Neither deletion affected the temporal pattern of globin gene switching. These results suggest that the LCR contains functionally redundant elements and that LCR complex formation does not require the presence of all DNase I hypersensitive sites. The phenotype of the 5'HS3 deletion suggests that individual HSs may influence the interaction of the LCR with specific globin gene promoters during the course of ontogeny.
Resumo:
Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.
Resumo:
The human VHL tumor suppressor gene has been implicated in the inherited disorder von Hippel-Lindau disease and in sporadic renal carcinoma. The homologous rat gene encodes a 185-amino acid protein that is 88% sequence identical to the aligned 213-amino acid human VHL gene product. When expressed in COS-7 cells, both the human and the rat VHL proteins showed predominant nuclear, nuclear and cytosolic, or predominant cytosolic VHL staining by immunofluorescence. A complicated pattern of cellular proteins was seen that could be specifically coimmunoprecipitated with the introduced VHL protein. A complex containing VHL and proteins of apparent molecular masses 16 and 9 kDa was the most consistently observed. Certain naturally occurring VHL missense mutations demonstrated either complete or partial loss of the p16-p9 complex. Thus, the VHL tumor suppressor gene product is a nuclear protein, perhaps capable of specifically translocating between the nucleus and the cytosol. It is likely that VHL executes its functions via formation of specific multiprotein complexes. Identification of these VHL-associated proteins will likely clarify the physiology of this tumor suppressor gene.
Resumo:
We have explored the feasibility of using a "double-tagging" assay for assessing which amino acids of a protein are responsible for its binding to another protein. We have chosen the adenovirus E1A-retinoblastoma gene product (pRB) proteins for a model system, and we focused on the high-affinity conserved region 2 of adenovirus E1A (CR2). We used site-specific mutagenesis to generate a mutant E1A gene with a lysine instead of an aspartic acid at position 121 within the CR2 site. We demonstrated that this mutant exhibited little binding to pRB by the double-tagging assay. We also have shown that this lack of binding is not due to any significant decrease in the level of expression of the beta-galactosidase-E1A fusion protein. We then created a "library" of phage expressing beta-galactosidase-E1A fusion proteins with a variety of different mutations within CR2. This library of E1A mutations was used in a double-tagging screening to identify mutant clones that bound to pRB. Three classes of phage were identified: the vast majority of clones were negative and exhibited no binding to pRB. Approximately 1 in 10,000 bound to pRB but not to E1A ("true positives"). A variable number of clones appeared to bind equally well to both pRB and E1A ("false positives"). The DNA sequence of 10 true positive clones yielded the following consensus sequence: DLTCXEX, where X = any amino acid. The recovery of positive clones with only one of several allowed amino acids at each position suggests that most, if not all, of the conserved residues play an important role in binding to pRB. On the other hand, the DNA sequence of the negative clones appeared random. These results are consistent with those obtained from other sources. These data suggest that a double-tagging assay can be employed for determining which amino acids of a protein are important for specifying its interaction with another protein if the complex forms within bacteria. This assay is rapid and up to 1 x 10(6) mutations can be screened at one time.