8 resultados para mate opportunity
em National Center for Biotechnology Information - NCBI
Resumo:
Avian plumage has long been used to test theories of sexual selection, with humans assessing the colors. However, many birds see in the ultraviolet (<400 nm), to which humans are blind. Consequently, it is important to know whether natural variation in UV reflectance from plumage functions in sexual signaling. We show that female starlings rank males differently when UV wavelengths are present or absent. Principal component analysis of ≈1300 reflectance spectra (300–700 nm) taken from sexually dimorphic plumage regions of males predicted preference under the UV+ treatment. Under UV− conditions, females ranked males in a different and nonrandom order, but plumage reflectance in the human visible spectrum did not predict choice. Natural variation in UV reflectance is thus important in avian mate assessment, and the prevailing light environment can have profound effects on observed mating preferences.
Resumo:
The effect of atmospheric aerosols and regional haze from air pollution on the yields of rice and winter wheat grown in China is assessed. The assessment is based on estimates of aerosol optical depths over China, the effect of these optical depths on the solar irradiance reaching the earth’s surface, and the response of rice and winter wheat grown in Nanjing to the change in solar irradiance. Two sets of aerosol optical depths are presented: one based on a coupled, regional climate/air quality model simulation and the other inferred from solar radiation measurements made over a 12-year period at meteorological stations in China. The model-estimated optical depths are significantly smaller than those derived from observations, perhaps because of errors in one or both sets of optical depths or because the data from the meteorological stations has been affected by local pollution. Radiative transfer calculations using the smaller, model-estimated aerosol optical depths indicate that the so-called “direct effect” of regional haze results in an ≈5–30% reduction in the solar irradiance reaching some of China’s most productive agricultural regions. Crop-response model simulations suggest an ≈1:1 relationship between a percentage increase (decrease) in total surface solar irradiance and a percentage increase (decrease) in the yields of rice and wheat. Collectively, these calculations suggest that regional haze in China is currently depressing optimal yields of ≈70% of the crops grown in China by at least 5–30%. Reducing the severity of regional haze in China through air pollution control could potentially result in a significant increase in crop yields and help the nation meet its growing food demands in the coming decades.
Resumo:
In most animal species, particularly those in which females engage in polyandry, mate choice is a sequential process in which a female must choose to mate or not to mate with each male encountered. Although a number of theoretical and empirical investigations have examined the effects of sequential mate choice on the operation of sexual selection, how females respond to solicitation by previous mates has received little attention. Here, we report the results of a study carried out on the polyandrous pseudoscorpion, Cordylochernes scorpioides, that assessed the sexual receptivity of once-mated females presented after a lapse of 1.5 hr or 48 hr with either their first mate or a different male. Females exhibited a high level of receptivity to new males, irrespective of intermating interval. By contrast, time between matings exerted a strong effect on female receptivity to previous mates. After a lapse of 48 hr, females did not differ significantly in their receptivity toward previous mates and different males, whereas at 1.5 hr after first mating, females were almost invariably unreceptive to males from whom they had previously accepted sperm. This result could not be attributed to male size or mating experience or to male sexual receptivity. Indeed, males were as willing to transfer sperm to a previous mate as they were to a new female. This difference between males and females in their propensity to remate with the same individual may reflect a conflict between the sexes, with males seeking to minimize postcopulatory sexual selection and females actively keeping open the opportunity for sperm competition and female choice of sperm by discriminating against previous mates.
Resumo:
Speciation rates among extant lineages of organisms vary extensively, but our understanding of the causes of this variation and, therefore, the processes of speciation is still remarkably incomplete. Both theoretical and empirical studies have indicated that sexual selection is important in speciation, but earlier discussions have focused almost exclusively on the potential role of female mate choice. Recent findings of postmating reproductive conflicts of interest between the sexes suggest a quite different route to speciation. Such conflicts may lead to perpetual antagonistic coevolution between males and females and may thus generate rapid evolutionary divergence of traits involved in reproduction. Here, we assess this hypothesis by contrasting pairs of related groups of insect species differing in the opportunity for postmating sexual conflict. Groups where females mate with many males exhibited speciation rates four times as high as in related groups where females mate only once. Our results not only highlight the general importance of postmating sexual selection in speciation, but also support the recent suggestion that sexual conflict is a key engine of speciation.
Resumo:
Few experiments have demonstrated a genetic correlation between the process of sexual selection and fitness benefits in offspring, either through female choice or male competition. Those that have looked at the relationship between female choice and offspring fitness have focused on juvenile fitness components, rather than fitness at later stages in the life cycle. In addition, many of these studies have not controlled for possible maternal effects. To test for a relationship between sexual selection and adult fitness, we carried out an artificial selection experiment in the fruit fly, Drosophila melanogaster. We created two treatments that varied in the level of opportunity for sexual selection. Increased opportunity for female choice and male competition was genetically correlated with an increase in adult survivorship, as well as an increase in male and female body size. Contrary to previous, single-generation studies, we did not find an increase in larval competitive ability. This study demonstrates that mate choice and/or male–male competition are correlated with an increase in at least one adult fitness component of offspring.
Resumo:
Although females prefer to mate with brightly colored males in numerous species, the benefits accruing to such females are virtually unknown. According to one hypothesis of sexual selection theory, if the expression of costly preferred traits in males (such as conspicuous colors) is proportional to the male's overall quality or reveals his quality, a well-developed trait should indicate good condition and/or viability for example. A female choosing such a male would therefore stand to gain direct or indirect fitness benefits, or both. Among potential phenotypic indicators of an individual's quality are the amount and brightness of its carotenoid-based colors and its boldness, as measured by its willingness to risk approaching predators without being killed. Here, we show experimentally that in the Trinidadian guppy (Poecilia reticulata) the visual conspicuousness of the color pattern of males correlates positively with boldness toward, and with escape distance from, a cichlid fish predator. Bold individuals are thus more informed about nearby predators and more likely to survive encounters with them. Mate-choice experiments showed that females prefer colorful males as mates, but prefer bolder males irrespective of their coloration when given the opportunity to observe their behavior toward a potential fish predator. By preferentially mating with colorful males, female guppies are thus choosing on average, relatively bold, and perhaps more viable, individuals. In doing so, and to the extent that viability is heritable, they potentially gain indirect fitness benefits by producing more viable offspring than otherwise.
Resumo:
The relative contribution of genetic and socio-cultural factors in the shaping of behavior is of fundamental importance to biologists and social scientists, yet it has proven to be extremely difficult to study in a controlled, experimental fashion. Here I describe experiments that examined the strength of genetic and cultural (imitative) factors in determining female mate choice in the guppy, Poecilia reticulata. Female guppies from the Paria River in Trinidad have a genetic, heritable preference for the amount of orange body color possessed by males. Female guppies will, however, also copy (imitate) the mate choice of other females in that when two males are matched for orange color, an "observer" female will copy the mate choice of another ("model") female. Three treatments were undertaken in which males differed by an average of 12%, 24%, or 40% of the total orange body color. In all cases, observer females viewed a model female prefer the less colorful male. When males differed by 12% or 24%, observer females preferred the less colorful male and thus copied the mate choice of others, despite a strong heritable preference for orange body color in males. When males differed by 40% orange body color, however, observer females preferred the more colorful male and did not copy the mate choice of the other female. In this system, then, imitation can "override" genetic preferences when the difference between orange body color in males is small or moderate, but genetic factors block out imitation effects when the difference in orange body color in males is large. This experiment provides the first attempt to experimentally examine the relative strength of cultural and genetic preferences for a particular trait and suggests that these two factors moderate one another in shaping social behavior.
Resumo:
Recent genetic evidence suggests that parasitic protozoa often reproduce by "selfing," defined as sexual stages from a single, clonal lineage fertilizing each other. Selfing favors production of an excess of female over male progeny. We tested whether the proportion of male gametocytes of blood parasites of the genus Haemoproteus was affected by variables that could influence the probability of selfing. Proportions of male Haemoproteus gametocytes from 11 passerine host populations were not affected by the age of the parasites' avian hosts, date in season, sex of host, intensity of host's infection, or prevalence of parasites within host populations.