8 resultados para mass effects
em National Center for Biotechnology Information - NCBI
Resumo:
We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic properties) of the QCM during the adsorption process, which makes it possible to investigate the viscoelastic properties of the different protein layers during the adsorption process. Below the isoelectric points of both met-Hb and HbCO, the ΔD vs. Δf graphs displayed two phases with significantly different slopes, which indicates two states of the adsorbed proteins with different visco-elastic properties. The slope of the first phase was smaller than that of the second phase, which indicates that the first phase was associated with binding of a more rigidly attached, presumably denatured protein layer, whereas the second phase was associated with formation of a second layer of more loosely bound proteins. This second layer desorbed, e.g., upon reduction of Fe3+ of adsorbed met-Hb and subsequent binding of carbon monoxide (CO) forming HbCO. Thus, the results suggest that the adsorbed proteins in the second layer were in a native-like state. This information could only be obtained from simultaneous, time-resolved measurements of changes in both D and f, demonstrating that the QCM technique provides unique information about the mechanisms of protein adsorption to solid surfaces.
Resumo:
We have generated RANK (receptor activator of NF-κB) nullizygous mice to determine the molecular genetic interactions between osteoprotegerin, osteoprotegerin ligand, and RANK during bone resorption and remodeling processes. RANK−/− mice lack osteoclasts and have a profound defect in bone resorption and remodeling and in the development of the cartilaginous growth plates of endochondral bone. The osteopetrosis observed in these mice can be reversed by transplantation of bone marrow from rag1−/− (recombinase activating gene 1) mice, indicating that RANK−/− mice have an intrinsic defect in osteoclast function. Calciotropic hormones and proresorptive cytokines that are known to induce bone resorption in mice and human were administered to RANK−/− mice without inducing hypercalcemia, although tumor necrosis factor α treatment leads to the rare appearance of osteoclast-like cells near the site of injection. Osteoclastogenesis can be initiated in RANK−/− mice by transfer of the RANK cDNA back into hematopoietic precursors, suggesting a means to critically evaluate RANK structural features required for bone resorption. Together these data indicate that RANK is the intrinsic cell surface determinant that mediates osteoprotegerin ligand effects on bone resorption and remodeling as well as the physiological and pathological effects of calciotropic hormones and proresorptive cytokines.
Resumo:
Plasma processing is a standard industrial method for the modification of material surfaces and the deposition of thin films. Polyatomic ions and neutrals larger than a triatomic play a critical role in plasma-induced surface chemistry, especially in the deposition of polymeric films from fluorocarbon plasmas. In this paper, low energy CF3+ and C3F5+ ions are used to modify a polystyrene surface. Experimental and computational studies are combined to quantify the effect of the unique chemistry and structure of the incident ions on the result of ion-polymer collisions. C3F5+ ions are more effective at growing films than CF3+, both at similar energy/atom of ≈6 eV/atom and similar total kinetic energies of 25 and 50 eV. The composition of the films grown experimentally also varies with both the structure and kinetic energy of the incident ion. Both C3F5+ and CF3+ should be thought of as covalently bound polyatomic precursors or fragments that can react and become incorporated within the polystyrene surface, rather than merely donating F atoms. The size and structure of the ions affect polymer film formation via differing chemical structure, reactivity, sticking probabilities, and energy transfer to the surface. The different reactivity of these two ions with the polymer surface supports the argument that larger species contribute to the deposition of polymeric films from fluorocarbon plasmas. These results indicate that complete understanding and accurate computer modeling of plasma–surface modification requires accurate measurement of the identities, number densities, and kinetic energies of higher mass ions and energetic neutrals.
Resumo:
A bioactive macrophage factor, the polypeptide daintain/allograft inflammatory factor 1 (AIF1), has been isolated from porcine intestine. It was discovered when searching for intestinal peptides with effects on insulin release, and its purification was monitored by the influence of the peptide fractions on pancreatic glucose-induced insulin secretion. Daintain/AIF1 is a 146-aa residue polypeptide with a mass of 16,603 Da and an acetylated N terminus. An internal 44-residue segment with the sequence pattern –KR–KK–GKR– has a motif typical of peptide hormone precursors, i.e., dibasic sites for potential activation cleavages and at the sequentially last such site, the structure GKR. The latter is a signal for C-terminal amide formation in the processing of peptide hormones. Daintain/AIF1 is immunohistochemically localized to microglial cells in the central nervous system and to dendritic cells and macrophages in several organs. A particularly dense accumulation of daintain/AIF1-immunoreactive macrophages was observed in the insulitis affecting the pancreatic islets of prediabetic BB rats. When injected intravenously in mice, daintain/AIF1 at 75 pmol/kg inhibited glucose (1 g/kg)-stimulated insulin secretion, with a concomitant impairment of the glucose elimination, whereas at higher doses (7.5 and 75 nmol/kg), daintain/AIF1 potentiated glucose-stimulated insulin secretion and enhanced the glucose elimination. Its dual influence on insulin secretion in vivo at different peptide concentrations, and the abundance of macrophages expressing daintain/AIF1 in the pancreatic islets of prediabetic rats, suggest that daintain/AIF1 may have a role in connection with the pathogenesis of insulin-dependent diabetes mellitus.
Resumo:
Aerosol particles are ubiquitous in the troposphere and exert an important influence on global climate and the environment. They affect climate through scattering, transmission, and absorption of radiation as well as by acting as nuclei for cloud formation. A significant fraction of the aerosol particle burden consists of minerals, and most of the remainder— whether natural or anthropogenic—consists of materials that can be studied by the same methods as are used for fine-grained minerals. Our emphasis is on the study and character of the individual particles. Sulfate particles are the main cooling agents among aerosols; we found that in the remote oceanic atmosphere a significant fraction is aggregated with soot, a material that can diminish the cooling effect of sulfate. Our results suggest oxidization of SO2 may have occurred on soot surfaces, implying that even in the remote marine troposphere soot provided nuclei for heterogeneous sulfate formation. Sea salt is the dominant aerosol species (by mass) above the oceans. In addition to being important light scatterers and contributors to cloud condensation nuclei, sea-salt particles also provide large surface areas for heterogeneous atmospheric reactions. Minerals comprise the dominant mass fraction of the atmospheric aerosol burden. As all geologists know, they are a highly heterogeneous mixture. However, among atmospheric scientists they are commonly treated as a fairly uniform group, and one whose interaction with radiation is widely assumed to be unpredictable. Given their abundances, large total surface areas, and reactivities, their role in influencing climate will require increased attention as climate models are refined.
Resumo:
Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.
Resumo:
Heat shock (HS) proteins (HSPs) induce protection against a number of stresses distinct from HS, including reactive oxygen species. In the human premonocytic line U937, we investigated in whole cells the effects of preexposure to HS and exposure to hydrogen peroxide (H2O2) on mitochondrial membrane potential, mass, and ultrastructure. HS prevented H2O2-induced alterations in mitochondrial membrane potential and cristae formation while increasing expression of HSPs and the protein product of bcl-2. Protection correlated best with the expression of the 70-kDa HSP, hsp70. We propose that mitochondria represent a selective target for HS-mediated protection against oxidative injury.
Resumo:
Growing evidence indicates that cells of the mononuclear phagocyte lineage, which includes peripheral blood monocytes (PBM) and tissue macrophages, participate in a variety of neurodestructive events and may play a pivotal role in neurodegenerative conditions such as Alzheimer disease. The present study sought to determine whether exposure of PBM to beta-amyloid peptide (A beta), the major protein of the amyloid fibrils that accumulate in the brain in Alzheimer disease, could induce cytopathic activity in these cells upon their subsequent incubation with neural tissue. PBM were incubated with A beta for 3 days, centrifuged and washed to remove traces of cell-free A beta, and then applied to organotypic cultures of rat brain for varying periods of time. By using a cell-viability assay to quantitate neurocytopathic effect, an increase in the ratio of dead to live cells was detected in cultures containing A beta-stimulated PBM versus control PBM (stimulated with either bovine serum albumin or reverse A beta peptide) as early as 3 days after coculture. The ratio of dead to live cells increased further by 10 days of coculture. By 30 days of coculture, the dead to live cell ratio remained elevated, and the intensity of neurocytopathic effect was such that large areas of brain mass dissociated from the cultures. These results indicate that stimulation of PBM with A beta significantly heightens their neurocytopathic activity and highlight the possibility that inflammatory reactions in the brain play a role in the neurodegeneration that accompanies Alzheimer disease.