2 resultados para malachite
em National Center for Biotechnology Information - NCBI
Resumo:
Chromophore-assisted light inactivation (CALI) offers the only method capable of modulating specific protein activities in localized regions and at particular times. Here, we generalize CALI so that it can be applied to a wider range of tasks. Specifically, we show that CALI can work with a genetically inserted epitope tag; we investigate the effectiveness of alternative dyes, especially fluorescein, comparing them with the standard CALI dye, malachite green; and we study the relative efficiencies of pulsed and continuous-wave illumination. We then use fluorescein-labeled hemagglutinin antibody fragments, together with relatively low-power continuous-wave illumination to examine the effectiveness of CALI targeted to kinesin. We show that CALI can destroy kinesin activity in at least two ways: it can either result in the apparent loss of motor activity, or it can cause irreversible attachment of the kinesin enzyme to its microtubule substrate. Finally, we apply this implementation of CALI to an in vitro system of motor proteins and microtubules that is capable of self-organized aster formation. In this system, CALI can effectively perturb local structure formation by blocking or reducing the degree of aster formation in chosen regions of the sample, without influencing structure formation elsewhere.
Resumo:
The biological function of specific gene products often is determined experimentally by blocking their expression in an organism and observing the resulting phenotype. Chromophore-assisted laser inactivation using malachite green (MG)-tagged antibodies makes it possible to inactivate target proteins in a highly restricted manner, probing their temporally and spatially resolved functions. In this report, we describe the isolation and in vitro characterization of a MG-binding RNA motif that may enable the same high-resolution analysis of gene function specifically at the RNA level (RNA-chromophore-assisted laser inactivation). A well-defined asymmetric internal bulge within an RNA duplex allows high affinity and high specificity binding by MG. Laser irradiation in the presence of low concentrations of MG induces destruction of the MG-binding RNA but not of coincubated control RNA. Laser-induced hydrolysis of the MG-binding RNA is restricted predominantly to a single nucleotide within the bulge. By appropriately incorporating this motif into a target gene, transcripts generated by the gene may be effectively tagged for laser-mediated destruction.