25 resultados para maize primary root

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that the degree of anisotropic expansion of plant tissues is controlled by the degree of alignment of cortical microtubules or cellulose microfibrils. Previously, for the primary root of maize (Zea mays L.), we quantified spatial profiles of expansion rate in length, radius, and circumference and the degree of growth anisotropy separately for the stele and cortex, as roots became thinner with time from germination or in response to low water potential (B.M. Liang, A.M. Dennings, R.E. Sharp, T.I. Baskin [1997] Plant Physiol 115:101–111). Here, for the same material, we quantified microtubule alignment with indirect immunofluorescence microscopy and microfibril alignment throughout the cell wall with polarized-light microscopy and from the innermost cell wall layer with electron microscopy. Throughout much of the growth zone, mean orientations of microtubules and microfibrils were transverse, consistent with their parallel alignment specifying the direction of maximal expansion rate (i.e. elongation). However, where microtubule alignment became helical, microfibrils often made helices of opposite handedness, showing that parallelism between these elements was not required for helical orientations. Finally, contrary to the hypothesis, the degree of growth anisotropy was not correlated with the degree of alignment of either microtubules or microfibrils. The mechanisms plants use to specify radial and tangential expansion rates remain uncharacterized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Root development is extremely sensitive to variations in nutrient supply, but the mechanisms are poorly understood. We have investigated the processes by which nitrate (NO3−), depending on its availability and distribution, can have both positive and negative effects on the development and growth of lateral roots. When Arabidopsis roots were exposed to a locally concentrated supply of NO3− there was no increase in lateral root numbers within the NO3−-rich zone, but there was a localized 2-fold increase in the mean rate of lateral root elongation, which was attributable to a corresponding increase in the rate of cell production in the lateral root meristem. Localized applications of other N sources did not stimulate lateral root elongation, consistent with previous evidence that the NO3− ion is acting as a signal rather than a nutrient. The axr4 auxin-resistant mutant was insensitive to the stimulatory effect of NO3−, suggesting an overlap between the NO3− and auxin response pathways. High rates of NO3− supply to the roots had a systemic inhibitory effect on lateral root development that acted specifically at the stage when the laterals had just emerged from the primary root, apparently delaying final activation of the lateral root meristem. A nitrate reductase-deficient mutant showed increased sensitivity to this systemic inhibitory effect, suggesting that tissue NO3− levels may play a role in generating the inhibitory signal. We present a model in which root branching is modulated by opposing signals from the plant’s internal N status and the external supply of NO3−.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel extensin gene has been identified in soybean (Glycine max L.) that encodes a hydroxyproline-rich glycoprotein (SbHRGP3) with two different domains. In this study expression of SbHRGP3 was investigated during soybean root development. SbHRGP was expressed in roots of mature plants, as well as seedlings, and showed a distinct pattern of expression during root development. The expression of SbHRGP3 increased gradually during root development of seedlings and reached a maximum while the secondary roots were maturing. The maximum expression level was contributed mainly by the secondary roots rather than by the primary root. Furthermore, expression of SbHRGP3 was preferentially detected in the regions undergoing maturation of the primary and secondary roots. These results imply that the expression of SbHRGP3 is regulated in an organ- and development-specific manner and that in soybean SbHRGP3 expression may be required for root maturation, presumably for the cessation of root elongation. Wounding and sucrose in combination enhanced expression of SbHRGP3 in roots, whereas both wounding and sucrose were required for the expression of SbHRGP3 in leaves.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using monoclonal tubulin and actin antibodies, Al-mediated alterations to microtubules (MTs) and actin microfilaments (MFs) were shown to be most prominent in cells of the distal part of the transition zone (DTZ) of an Al-sensitive maize (Zea mays L.) cultivar. An early response to Al (1 h, 90 μm) was the depletion of MTs in cells of the DTZ, specifically in the outermost cortical cell file. However, no prominent changes to the MT cytoskeleton were found in elongating cells treated with Al for 1 h in spite of severe inhibition of root elongation. Al-induced early alterations to actin MFs were less dramatic and consisted of increased actin fluorescence of partially disintegrated MF arrays in cells of the DTZ. These tissue- and development-specific alterations to the cytoskeleton were preceded by and/or coincided with Al-induced depolarization of the plasma membrane and with callose formation, particularly in the outer cortex cells of the DTZ. Longer Al supplies (>6 h) led to progressive enhancements of lesions to the MT cytoskeleton in the epidermis and two to three outer cortex cell files. Our data show that the cytoskeleton in the cells of the DTZ is especially sensitive to Al, consistent with the recently proposed specific Al sensitivity of this unique, apical maize root zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies with 15N indicate that appreciable generation of NH4+ from endogenous sources accompanies the uptake and assimilation of exogenous NH4+ by roots. To identify the source of NH4+ generation, maize (Zea mays L.) seedlings were grown on 14NH4+ and then exposed for 3 d to highly labeled 15NH4+. More of the entering 15NH4+ was incorporated into the protein-N fraction of roots in darkness (approximately 25%) than in the light (approximately 14%). Although the 14NH4+ content of roots declined rapidly to less than 1 μmol per plant, efflux of 14NH4+ continued throughout the 3-d period at an average daily rate of 14 μmol per plant. As a consequence, cumulative 14NH4+ efflux during the 3-d period accounted for 25% of the total 14N initially present in the root. Although soluble organic 14N in roots declined during the 3-d period, insoluble 14N remained relatively constant. In shoots both soluble organic 14N and 14NH4+ declined, but a comparable increase in insoluble 14N was noted. Thus, total 14N in shoots remained constant, reflecting little or no net redistribution of 14N between shoots and roots. Collectively, these observations reveal that catabolism of soluble organic N, not protein N, is the primary source of endogenous NH4+ generation in maize roots.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyethylene glycol (PEG), which is often used to impose low water potentials (ψw) in solution culture, decreases O2 movement by increasing solution viscosity. We investigated whether this property causes O2 deficiency that affects the elongation or metabolism of maize (Zea mays L.) primary roots. Seedlings grown in vigorously aerated PEG solutions at ambient solution O2 partial pressure (pO2) had decreased steady-state root elongation rates, increased root-tip alanine concentrations, and decreased root-tip proline concentrations relative to seedlings grown in PEG solutions of above-ambient pO2 (alanine and proline accumulation are responses to hypoxia and low ψw, respectively). Measurements of root pO2 were made using an O2 microsensor to ensure that increased solution pO2 did not increase root pO2 above physiological levels. In oxygenated PEG solutions that gave maximal root elongation rates, root pO2 was similar to or less than (depending on depth in the tissue) pO2 of roots growing in vermiculite at the same ψw. Even without PEG, high solution pO2 was necessary to raise root pO2 to the levels found in vermiculite-grown roots. Vermiculite was used for comparison because it has large air spaces that allow free movement of O2 to the root surface. The results show that supplemental oxygenation is required to avoid hypoxia in PEG solutions. Also, the data suggest that the O2 demand of the root elongation zone may be greater at low relative to high ψw, compounding the effect of PEG on O2 supply. Under O2-sufficient conditions root elongation was substantially less sensitive to the low ψw imposed by PEG than that imposed by dry vermiculite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For a better understanding of Al inhibition of root elongation, knowledge of the morphological and functional organization of the root apex is a prerequisite. We developed a polyvinyl chloride-block technique to supply Al (90 μm monomeric Al) in a medium containing agarose to individual 1-mm root zones of intact seedlings of maize (Zea mays L. cv Lixis). Root elongation was measured during a period of 5 h. After Al treatment, callose (5 h) and Al (1 h) contents of individual 1-mm apical root segments were determined. For comparison, callose and Al levels were also measured in root segments after uniform Al supply in agarose blocks to the 10-mm root apex. Only applying Al to the three apical 1-mm root zones inhibited root elongation after 1 h. The order of sensitivity was 1 to 2 > 0 to 1 > 2 to 3 mm. In the 1- to 2-mm root zone high levels of Al-induced callose formation and accumulation of Al was found, independently of whether Al was applied to individual apical root zones or uniformly to the whole-root apex. We conclude from these results that the distal part of the transition zone of the root apex, where the cells are undergoing a preparatory phase for rapid elongation (F. Baluška, D. Volkmann, P.W. Barlow [1996] Plant Physiol 112: 3–4), is the primary target of Al in this Al-sensitive maize cultivar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global distributions for fine root biomass, length, and surface area with depth in the soil, and global estimates of nutrient pools in fine roots. Calculated root surface area is almost always greater than leaf area, more than an order of magnitude so in grasslands. The average C:N:P ratio in living fine roots is 450:11:1, and global fine root carbon is more than 5% of all carbon contained in the atmosphere. Assuming conservatively that fine roots turn over once per year, they represent 33% of global annual net primary productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is the key enzyme in ammonia assimilation and catalyzes the ATP-dependent condensation of NH3 with glutamate to produce glutamine. GS in plants is an octameric enzyme. Recent work from our laboratory suggests that GS activity in plants may be regulated at the level of protein turnover (S.J. Temple, T.J. Knight, P.J. Unkefer, C. Sengupta-Gopalan [1993] Mol Gen Genet 236: 315–325; S.J. Temple, S. Kunjibettu, D. Roche, C. Sengupta-Gopalan [1996] Plant Physiol 112: 1723–1733; S.J. Temple, C. Sengupta-Gopalan [1997] In C.H. Foyer, W.P. Quick, eds, A Molecular Approach to Primary Metabolism in Higher Plants. Taylor & Francis, London, pp 155–177). Oxidative modification of GS has been implicated as the first step in the turnover of GS in bacteria. By incubating soybean (Glycine max) root extract enriched in GS in a metal-catalyzed oxidation system to produce the ·OH radical, we have shown that GS is oxidized and that oxidized GS is inactive and more susceptible to degradation than nonoxidized GS. Histidine and cysteine protect GS from metal-catalyzed inactivation, indicating that oxidation modifies the GS active site and that cysteine and histidine residues are the site of modification. Similarly, ATP and particularly ATP/glutamate give the enzyme the greatest protection against oxidative inactivation. The roots of plants fed ammonium nitrate showed a 3-fold increase in the level of GS polypeptides and activity compared with plants not fed ammonium nitrate but without a corresponding increase in the GS transcript level. This would suggest either translational or posttranslational control of GS levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodules the NADH-GOGAT gene is predominantly expressed in infected cells. Nodules devoid of bacteroids (empty) induced by Sinorhizobium meliloti 7154 had no NADH-GOGAT transcript detectable by in situ hybridization, suggesting that the presence of the bacteroid may be important for NADH-GOGAT expression. The pattern of expression of NADH-GOGAT shifted during root nodule development. Until d 9 after planting, all infected cells appeared to express NADH-GOGAT. By d 19, a gradient of expression from high in the early symbiotic zone to low in the late symbiotic zone was observed. In 33-d-old nodules expression was seen in only a few cell layers in the early symbiotic zone. This pattern of expression was also observed for the nifH transcript but not for leghemoglobin. The promoter of NADH-GOGAT was evaluated in transgenic alfalfa plants carrying chimeric β-glucuronidase promoter fusions. The results suggest that there are at least four regulatory elements. The region responsible for expression in the infected cell zone contains an 88-bp direct repeat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root elongation, hematoxylin staining, and changes in the ultrastructure of root-tip cells of an Al-tolerant maize variety (Zea mays L. C 525 M) exposed to nutrient solutions with 20 μm Al (2.1 μm Al3+ activity) for 0, 4, and 24 h were investigated in relation to the subcellular distribution of Al using scanning transmission electron microscopy and energy-dispersive x-ray microanalysis on samples fixed by different methods. Inhibition of root-elongation rates, hematoxylin staining, cell wall thickening, and disturbance of the distribution of pyroantimoniate-stainable cations, mainly Ca, was observed only after 4 and not after 24 h of exposure to Al. The occurrence of these transient, toxic Al effects on root elongation and in cell walls was accompanied by the presence of solid Al-P deposits in the walls. Whereas no Al was detectable in cell walls after 24 h, an increase of vacuolar Al was observed after 4 h of exposure. After 24 h, a higher amount of electron-dense deposits containing Al and P or Si was observed in the vacuoles. These results indicate that in this tropical maize variety, tolerance mechanisms that cause a change in apoplastic Al must be active. Our data support the hypothesis that in Al-tolerant plants, Al can rapidly cross the plasma membrane; these data clearly contradict the former conclusions that Al mainly accumulates in the apoplast and enters the symplast only after severe cell damage has occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parasitic plants in the Scrophulariaceae develop infective root structures called haustoria in response to chemical signals released from host-plant roots. This study used a simple in vitro assay to characterize natural and synthetic molecules that induce haustoria in the facultative parasite Triphysaria versicolor. Several phenolic acids, flavonoids, and the quinone 2,6-dimethoxy-p-benzoquinone induced haustoria in T. versicolor root tips within hours after treatment. The concentration at which different molecules were active varied widely, the most active being 2,6-dimethoxy-p-benzoquinone and the anthocyanidin peonidin. Maize (Zea mays) seeds are rich sources of molecules that induce T. versicolor haustoria in vitro, and chromatographic analyses indicated that the active molecules present in maize-seed rinses include anthocyanins, other flavonoids, and simple phenolics. The presence of different classes of inducing molecules in seed rinses was substantiated by the observation that maize kernels deficient in chalcone synthase, a key enzyme in flavonoid biosynthesis, released haustoria-inducing molecules, although at reduced levels compared with wild-type kernels. We discuss these results in light of existing models for host perception in the related parasitic plant Striga.