6 resultados para magnesium niobate
em National Center for Biotechnology Information - NCBI
ATPases and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides
Resumo:
Three separate proteins, BchD, BchH, and BchI, together with ATP, insert magnesium into protoporphyrin IX. An analysis of ATP utilization by the subunits revealed the following: BchH catalyzed ATP hydrolysis at the rate of 0.9 nmol per min per mg of protein. BchI and BchD, tested individually, had no ATPase activity but, when combined, hydrolyzed ATP at the rate of 117.9 nmol/min per mg of protein. Magnesium ions were required for the ATPase activities of both BchH and BchI+D, and these activities were inhibited 50% by 2 mM o-phenanthroline. BchI additionally catalyzed a phosphate exchange reaction from ATP and ADP. We conclude that ATP hydrolysis by BchI+D is required for an activation step in the magnesium chelatase reaction, whereas ATPase activity of BchH and the phosphate exchange activity of BchI participate in subsequent reactions leading to the insertion of Mg2+ into protoporphyrin IX.
Resumo:
Folding of the Tetrahymena self-splicing RNA into its active conformation involves a set of discrete intermediate states. The Mg2+-dependent equilibrium transition from the intermediates to the native structure is more cooperative than the formation of the intermediates from the unfolded states. We show that the degree of cooperativity is linked to the free energy of each transition and that the rate of the slow transition from the intermediates to the native state decreases exponentially with increasing Mg2+ concentration. Monovalent salts, which stabilize the folded RNA nonspecifically, induce states that fold in less than 30 s after Mg2+ is added to the RNA. A simple model is proposed that predicts the folding kinetics from the Mg2+-dependent change in the relative stabilities of the intermediate and native states.
Resumo:
Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology.
Resumo:
Mg-chelatase catalyzes the ATP-dependent insertion of Mg2+ into protoporphyrin-IX to form Mg-protoporphyrin-IX. This is the first step unique to chlorophyll synthesis, and it lies at the branch point for porphyrin utilization; the other branch leads to heme. Using the stromal fraction of pea (Pisum sativum L. cv Spring) chloroplasts, we have prepared Mg-chelatase in a highly active (1000 pmol 30 min−1 mg−1) and stable form. The reaction had a lag in the time course, which was overcome by preincubation with ATP. The concentration curves for ATP and Mg2+ were sigmoidal, with apparent Km values for Mg2+ and ATP of 14.3 and 0.35 mm, respectively. The Km for deuteroporphyrin was 8 nm. This Km is 300 times lower than the published porphyrin Km for ferrochelatase. The soluble extract was separated into three fractions by chromatography on blue agarose, followed by size-selective centrifugal ultrafiltration of the column flow-through. All three fractions were required for activity, clearly demonstrating that the plant Mg-chelatase requires at least three protein components. Additionally, only two of the components were required for activation; both were contained in the flow-through from the blue-agarose column.
Resumo:
N-Methyl-D-aspartate (NMDA) receptors are blocked at hyperpolarizing potentials by extracellular Mg ions. Here we present a detailed kinetic analysis of the Mg block in recombinant wild-type and mutant NMDA receptors. We find that the Mg binding site is the same in the wild-type and native hippocampal NMDA receptor channels. In the mutant channels, however, Mg ions bind with a 10-fold lower affinity. On the basis of these results, we propose that the energy well at the Mg binding site in the mutants is shallow and the binding is unstable because of an increase in the rate of dissociation. We postulate that the dipole formed by the amide group of asparagine 614 of the epsilon 1 subunit contributes to the structure of the binding site but predict that additional ligands will be involved in coordinating Mg ions.
Resumo:
Mg2+ ions block N-methyl-D-aspartate (NMDA) channels by entering the pore from either the extracellular or the cytoplasmic side of the membrane in a voltage-dependent manner. We have used these two different block phenomena to probe the structure of the subunits forming NMDA channels. We have made several amino acid substitutions downstream of the Q/R/N site in the TMII region of both NR1 and NR2A subunits. Mutant NR1 subunits were coexpressed with wild-type NR2A subunits and vice versa in Xenopus oocytes. We found that individually mutating the first two amino acid residues downstream to the Q/R/N site affects mostly the block by external Mg2+. Mutations of residues five to seven positions downstream of the Q/R/N site do not influence the external Mg2+ block, but clearly influence the block by internal Mg2+. These data add support to the hypothesis that there are two separate binding sites for external and internal Mg2+ block. They also indicate that the C-terminal end of TMII contributes to the inner vestibule of the pore of NMDA channels and thus provide additional evidence that TMII forms a loop that reemerges toward the cytoplasmic side of the membrane.