74 resultados para loss of heterozygosity
em National Center for Biotechnology Information - NCBI
Resumo:
The repair of chromosomal double-strand breaks (DSBs) is necessary for genomic integrity in all organisms. Genetic consequences of misrepair include chromosomal loss, deletion, and duplication resulting in loss of heterozygosity (LOH), a common finding in human solid tumors. Although work with radiation-sensitive cell lines suggests that mammalian cells primarily rejoin DSBs by nonhomologous mechanisms, alternative mechanisms that are implicated in chromosomal LOH, such as allelic recombination, may also occur. We have examined chromosomal DSB repair between homologs in a gene targeted mammalian cell line at the retinoblastoma (Rb) locus. We have found that allelic recombinational repair occurs in mammalian cells and is increased at least two orders of magnitude by the induction of a chromosomal DSB. One consequence of allelic recombination is LOH at the Rb locus. Some of the repair events also resulted in other types of genetic instability, including deletions and duplications. We speculate that mammalian cells may have developed efficient nonhomologous DSB repair processes to bypass allelic recombination and the potential for reduction to homozygosity.
Resumo:
Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.
Resumo:
Previous studies of Min/+ (multiple intestinal neoplasia) mice on a sensitive genetic background, C57BL/6 (B6), showed that adenomas have lost heterozygosity for the germ-line ApcMin mutation in the Apc (adenomatous polyposis coli) gene. We now report that on a strongly resistant genetic background, AKR/J (AKR), Min-induced adenoma multiplicity is reduced by about two orders of magnitude compared with that observed on the B6 background. Somatic treatment with a strong mutagen increases tumor number in AKR Min/+ mice in an age-dependent manner, similar to results previously reported for B6 Min/+ mice. Immunohistochemical analyses indicate that Apc expression is suppressed in all intestinal tumors from both untreated and treated AKR Min/+ mice. However, the mechanism of Apc inactivation in AKR Min/+ mice often differs from that observed for B6 Min/+ mice. Although loss of heterozygosity is observed in some tumors, a significant percentage of tumors showed neither loss of heterozygosity nor Apc truncation mutations. These results extend our understanding of the effects of genetic background on Min-induced tumorigenesis in several ways. First, the AKR strain carries modifiers of Min in addition to Mom1. This combination of AKR modifiers can almost completely suppress spontaneous intestinal tumorigenesis associated with the Min mutation. Second, even on such a highly resistant genetic background, tumor formation continues to involve an absence of Apc function. The means by which Apc function is inactivated is affected by genetic background. Possible scenarios are discussed.
Resumo:
Detection of loss of heterozygosity (LOH) by comparison of normal and tumor genotypes using PCR-based microsatellite loci provides considerable advantages over traditional Southern blotting-based approaches. However, current methodologies are limited by several factors, including the numbers of loci that can be evaluated for LOH in a single experiment, the discrimination of true alleles versus "stutter bands," and the use of radionucleotides in detecting PCR products. Here we describe methods for high throughput simultaneous assessment of LOH at multiple loci in human tumors; these methods rely on the detection of amplified microsatellite loci by fluorescence-based DNA sequencing technology. Data generated by this approach are processed by several computer software programs that enable the automated linear quantitation and calculation of allelic ratios, allowing rapid ascertainment of LOH. As a test of this approach, genotypes at a series of loci on chromosome 4 were determined for 58 carcinomas of the uterine cervix. The results underscore the efficacy, sensitivity, and remarkable reproducibility of this approach to LOH detection and provide subchromosomal localization of two regions of chromosome 4 commonly altered in cervical tumors.
Resumo:
The gene encoding human plakoglobin was mapped to chromosome 17q12-q22. An intragenic restriction fragment length polymorphism was used to localize the plakoglobin gene distal to locus KRT10 and proximal to the marker D17S858. The plakoglobin gene colocalizes with the polymorphic 17q21 marker UM8 on the same cosmid insert. This subregion of chromosome 17 is known to be particularly subjected to genetic alterations in sporadic breast and ovarian tumors. We show loss of heterozygosity of the plakoglobin gene in breast and ovarian tumors. We have identified a low-frequency polymorphism in the plakoglobin coding sequence which results in an arginine to histidine substitution at amino acid position 142 of the protein, as well as a silent mutation at nucleotide position 332 of the coding sequence. This polymorphism allowed us to demonstrate an allelic association of plakoglobin with predisposition to familial breast and ovarian cancers. Our results, together with the present knowledge about the biological function of plakoglobin, suggest that plakoglobin might represent a putative tumor suppressor gene for breast and ovarian cancers.
Resumo:
Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.
Resumo:
This report shows that loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) locus occurred in 5/8 (63%) dysplastic liver lesions and 11/18 (61%) hepatocellular carcinomas (HCCs) associated with the high risk factors of hepatitis virus infection and liver cirrhosis. Mutations in the remaining allele were detected in 6/11 (55%) HCCs, including deletions in a polydeoxyguanosine region known to be a target of microsatellite instability. M6P/IGF2R allele loss was also found in cirrhotic tissue of clonal origin adjacent to these dysplastic lesions and HCCs, demonstrating that M6P/IGF2R inactivation occurs early in liver carcinogenesis. In conclusion, HCCs frequently develop from clonal expansions of phenotypically normal, M6P/IGF2R-mutated hepatocytes, providing further support for the idea that M6P/IGF2R functions as a liver tumor-suppressor gene.
Resumo:
Losses of heterozygosity are the most common molecular genetic alteration observed in human cancers. However, there have been few systematic studies to understand the mechanism(s) responsible for losses of heterozygosity in such tumors. Here we report a detailed investigation of the five chromosomes lost most frequently in human colorectal cancers. A total of 10,216 determinations were made with 88 microsatellite markers, revealing 245 chromosomal loss events. The mechanisms of loss were remarkably chromosome-specific. Some chromosomes displayed complete loss such as that predicted to result from mitotic nondisjunction. However, more than half of the losses were associated with losses of only part of a chromosome rather than a whole chromosome. Surprisingly, these losses were due largely to structural alterations rather than to mitotic recombination, break-induced replication, or gene conversion, suggesting novel mechanisms for the generation of much of the aneuploidy in this common tumor type.
Resumo:
Uteroglobin (UG) is a multifunctional, secreted protein that has receptor-mediated functions. The human UG (hUG) gene is mapped to chromosome 11q12.2–13.1, a region frequently rearranged or deleted in many cancers. Although high levels of hUG expression are characteristic of the mucosal epithelia of many organs, hUG expression is either drastically reduced or totally absent in adenocarcinomas and in viral-transformed epithelial cells derived from the same organs. In agreement with these findings, in an ongoing study to evaluate the effects of aging on UG-knockout mice, 16/16 animals developed malignant tumors, whereas the wild-type littermates (n = 25) remained apparently healthy even after 1½ years. In the present investigation, we sought to determine the effects of induced-expression of hUG in human cancer cells by transfecting several cell lines derived from adenocarcinomas of various organs with an hUG-cDNA construct. We demonstrate that induced hUG expression reverses at least two of the most important characteristics of the transformed phenotype (i.e., anchorage-independent growth on soft agar and extracellular matrix invasion) of only those cancer cells that also express the hUG receptor. Similarly, treatment of the nontransfected, receptor-positive adenocarcinoma cells with purified recombinant hUG yielded identical results. Taken together, these data define receptor-mediated, autocrine and paracrine pathways through which hUG reverses the transformed phenotype of cancer cells and consequently, may have tumor suppressor-like effects.
Resumo:
Little is known about plant circadian oscillators, in spite of how important they are to sessile plants, which require accurate timekeepers that enable the plants to respond to their environment. Previously, we identified a circadian clock-associated (CCA1) gene that encodes an Myb-related protein that is associated with phytochrome control and circadian regulation in plants. To understand the role CCA1 plays in phytochrome and circadian regulation, we have isolated an Arabidopsis line with a T DNA insertion that results in the loss of CCA1 RNA, of CCA1 protein, and of an Lhcb-promoter binding activity. This mutation affects the circadian expression of all four clock-controlled genes that we examined. The results show that, despite their similarity, CCA1 and LHY are only partially redundant. The lack of CCA1 also affects the phytochrome regulation of gene expression, suggesting that CCA1 has an additional role in a signal transduction pathway from light, possibly acting at the point of integration between phytochrome and the clock. Our results indicate that CCA1 is an important clock-associated protein involved in circadian regulation of gene expression.
Resumo:
The NOD (nonobese diabetic) mouse has been studied as an animal model for autoimmune insulin-dependent diabetes and Sjögren’s syndrome. NOD.Igμnull mice, which lack functional B lymphocytes, develop progressive histopathologic lesions of the submandibular and lachrymal glands similar to NOD mice, but in the absence of autoimmune insulitis and diabetes. Despite the focal appearance of T cells in salivary and lachrymal tissues, NOD.Igμnull mice fail to lose secretory function as determined by stimulation of the muscarinic/cholinergic receptor by the agonist pilocarpine, suggesting a role for B cell autoantibodies in mediating exocrine dryness. Infusion of purified serum IgG or F(ab′)2 fragments from parental NOD mice or human primary Sjögren’s syndrome patients, but not serum IgG from healthy controls, alters stimulated saliva production, an observation consistent with antibody binding to neural receptors. Furthermore, human patient IgG fractions competitively inhibited the binding of the muscarinic receptor agonist, [3H]quinuclidinyl benzilate, to salivary gland membranes. This autoantibody activity is lost after preadsorption with intact salivary cells. These findings indicate that autoantibodies play an important part in the functional impairment of secretory processes seen in connection with the autoimmune exocrinopathy of Sjögren’s syndrome.
Resumo:
Social behaviors are often targets of natural selection among higher organisms, but quantifying the effects of such selection is difficult. We have used the bacterium Myxococcus xanthus as a model system for studying the evolution of social interactions. Changes in the social behaviors of 12 M. xanthus populations were quantified after 1,000 generations of evolution in a liquid habitat, in which interactions among individuals were continually hindered by shaking and low cell densities. Derived lineages were compared with their ancestors with respect to maximum growth rate, motility rates on hard and soft agar, fruiting body formation ability, and sporulation frequency during starvation. Improved performance in the liquid selective regime among evolved lines was usually associated with significant reductions in all of the major social behaviors of M. xanthus. Maintenance of functional social behaviors is apparently detrimental to fitness under asocial growth conditions.
Resumo:
Ataxia-telangiectasia (AT) is a human disease caused by mutations in the ATM gene. The neural phenotype of AT includes progressive cerebellar neurodegeneration, which results in ataxia and eventual motor dysfunction. Surprisingly, mice in which the Atm gene has been inactivated lack distinct behavioral ataxia or pronounced cerebellar degeneration, the hallmarks of the human disease. To determine whether lack of the Atm protein can nonetheless lead to structural abnormalities in the brain, we compared brains from male Atm-deficient mice with male, age-matched controls. Atm-deficient mice exhibited severe degeneration of tyrosine hydroxylase-positive, dopaminergic nigro-striatal neurons, and their terminals in the striatum. This cell loss was accompanied by a large reduction in immunoreactivity for the dopamine transporter in the striatum. A reduction in dopaminergic neurons also was evident in the ventral tegmental area. This effect was selective in that the noradrenergic nucleus locus coeruleus was normal in these mice. Behaviorally, Atm-deficient mice expressed locomotor abnormalities manifested as stride-length asymmetry, which could be corrected by peripheral application of the dopaminergic precursor l-dopa. In addition, these mice were hypersensitive to the dopamine releasing drug d-amphetamine. These results indicate that ATM deficiency can severely affect dopaminergic neurons in the central nervous system and suggest possible strategies for treating this aspect of the disease.
Resumo:
Hybrid mice carrying oncogenic transgenes afford powerful systems for investigating loss of heterozygosity (LOH) in tumors. Here, we apply this approach to a neoplasm of key importance in human medicine: mammary carcinoma. We performed a whole genome search for LOH using the mouse mammary tumor virus/v-Ha-ras mammary carcinoma model in female (FVB/N × Mus musculus castaneus)F1 mice. Mammary tumors developed as expected, as well as a few tumors of a second type (uterine leiomyosarcoma) not previously associated with this transgene. Genotyping of 94 anatomically independent tumors revealed high-frequency LOH (≈38%) for markers on chromosome 4. A marked allelic bias was observed, with M. musculus castaneus alleles almost exclusively being lost. No evidence of genomic imprinting effects was noted. These data point to the presence of a tumor suppressor gene(s) on mouse chromosome 4 involved in mammary carcinogenesis induced by mutant H-ras expression, and for which a significant functional difference may exist between the M. musculus castaneus and FVB/N alleles. Provisional subchromosomal localization of this gene, designated Loh-3, can be made to a distal segment having syntenic correspondence to human chromosome 1p; LOH in this latter region is observed in several human malignancies, including breast cancers. Evidence was also obtained for a possible second locus associated with LOH with less marked allele bias on proximal chromosome 4.
Resumo:
Leishmania donovani is the etiologic agent of fatal visceral leishmaniasis in man. During their life cycle, Leishmania exist as flagellated promastigotes within the sandfly vector and as nonflagellated amastigotes in the macrophage phagolysosomal compartment of the mammalian host. The transformation from promastigotes to amastigotes is a critical step for the establishment of infection, and the molecular basis for this transformation is poorly understood. To define the molecular basis for amastigote survival in the mammalian host, we previously identified an amastigote stage-specific gene family termed “A2.” In the present study, we have inhibited the expression of A2 mRNA and A2 protein in amastigotes using antisense RNA and show that the resulting A2-deficient amastigotes are severely compromised with respect to virulence in mice. Amastigotes that did survive in the mice had restored A2 protein expression. These data demonstrate that A2 protein is required for L. donovani survival in a mammalian host, and this represents the first identified amastigote-specific virulence factor identified in Leishmania. This study also reveals that it is possible to study gene function in Leishmania through the expression of antisense RNA.