28 resultados para long-acting b-agonist

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memory is a hallmark of immunity. Memory carried by antibodies is largely responsible for protection against reinfection with most known acutely lethal infectious agents and is the basis for most clinically successful vaccines. However, the nature of long-term B cell and antibody memory is still unclear. B cell memory was studied here after infection of mice with the rabies-like cytopathic vesicular stomatitis virus, the noncytopathic lymphocytic choriomeningitis virus (Armstrong and WE), and after immunization with various inert viral antigens inducing naive B cells to differentiate either to plasma cells or memory B cells in germinal centers of secondary lymphoid organs. The results show that in contrast to very low background levels against internal viral antigens, no significant neutralizing antibody memory was observed in the absence of antigen and suggest that memory B cells (i) are long-lived in the absence of antigen, nondividing, and relatively resistant to irradiation, and (ii) must be stimulated by antigen to differentiate to short-lived antibody-secreting plasma cells, a process that is also efficient in the bone marrow and always depends on radiosensitive, specific T help. Therefore, for vaccines to induce long-term protective antibody titers, they need to repeatedly provide, or continuously maintain, antigen in minimal quantities over a prolonged time period in secondary lymphoid organs or the bone marrow for sufficient numbers of long-lived memory B cells to mature to short-lived plasma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice generated by disrupting the clotting factor IX gene exhibit severe bleeding disorder and closely resemble the phenotype seen in hemophilia B patients. Here we demonstrate that a single intraportal injection of a recombinant adeno-associated virus (AAV) vector encoding canine factor IX cDNA under the control of a liver-specific enhancer/promoter leads to a long-term and complete correction of the bleeding disorder. High level expression of up to 15–20 μg/ml of canine factor IX was detected in the plasma of mice injected with 5.6 × 1011 particles of an AAV vector for >5 months. The activated partial thromboplastin time of the treated mice was fully corrected to higher than normal levels. Liver-specific expression of canine factor IX was confirmed by immunofluorescence staining, and secreted factor IX protein was identified in the mouse plasma by Western blotting. All treated mice survived the tail clip test without difficulty. Thus, a single intraportal injection of a recombinant adeno-associated virus vector expressing factor IX successfully cured the bleeding disorder of hemophilia B mice, proving the feasibility of using AAV-based vectors for liver-targeted gene therapy of genetic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidermis is renewed by a population of stem cells that have been defined in vivo by slow turnover, label retention, position in the epidermis, and enrichment in β1 integrin, and in vitro by clonogenic growth, prolonged serial passage, and rapid adherence to extracellular matrix. The goal of this study is to determine whether clonogenic cells with long-term growth potential in vitro persist in vivo and give rise to a fully differentiated epidermis. Human keratinocytes were genetically labeled in culture by transduction with a retrovirus encoding the lacZ gene and grafted to athymic mice. Analysis of the cultures before grafting showed that 21.1–27.8% of clonogenic cells with the capacity for >30 generations were successfully transduced. In vivo, β-galactosidase (β-gal) positive cells participated in the formation of a fully differentiated epithelium and were detected throughout the 40-week postgraft period, initially as loosely scattered clusters and later as distinct vertical columns. Viable cells recovered from excised grafts were seeded at clonal densities and 23.3–33.3% of the colonies thus formed were β-gal positive. In addition, no evidence of transgene inactivation was obtained: all keratinocyte colonies recovered from grafted tissue that were β-gal negative also lacked the lacZ transgene. These results show that cells with long-term growth properties in vitro do indeed persist in vivo and form a fully differentiated epidermis, thereby exhibiting the properties of stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the four subtypes of Hodgkin disease (HD), lymphocyte-predominant (LP) HD is now generally considered as a separate entity. The B cell nature of the typical Hodgkin and Reed–Sternberg (HRS) cells and their variants (L and H, lymphocytic and histiocytic cells) in LP HD has long been suspected, but the question of whether these cells represent a true tumor clone is unclear. We previously demonstrated clonal Ig gene rearrangements in one case of LP HD. In the present study, five cases of LP HD were analyzed by micromanipulation of single HRS cells from frozen tissue sections and DNA amplification of rearranged Ig heavy chain genes from those cells. Clonal V gene rearrangements harboring somatic mutations were detected in each case. In three cases ongoing somatic mutation was evident. This shows that HRS cells in LP HD are a clonal tumor population derived from germinal center B cells. The pattern of somatic mutation indicates that HRS cells in LP HD are selected for antibody expression. This, and the presence of ongoing mutation discriminates LP from classical HD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The function of the immune system is highly dependent on cellular differentiation and clonal expansion of antigen-specific lymphocytes. However, little is known about mechanisms that may have evolved to protect replicative potential in actively dividing lymphocytes during immune differentiation and response. Here we report an analysis of telomere length and telomerase expression, factors implicated in the regulation of cellular replicative lifespan, in human B cell subsets. In contrast to previous observations, in which telomere shortening and concomitant loss of replicative potential occur in the process of somatic cell differentiation and cell division, it was found that germinal center (GC) B cells, a compartment characterized by extensive clonal expansion and selection, had significantly longer telomeric restriction fragments than those of precursor naive B cells. Furthermore, it was found that telomerase, a telomere-synthesizing enzyme, is expressed at high levels in GC B cells (at least 128-fold higher than those of naive and memory B cells), correlating with the long telomeres in this subset of B cells. Finally, both naive and memory B cells were capable of up-regulating telomerase activity in vitro in response to activation signals through the B cell antigen receptor in the presence of CD40 engagement and/or interleukin 4. These observations suggest that a novel process of telomere lengthening, possibly mediated by telomerase, functions in actively dividing GC B lymphocytes and may play a critical role in humoral immune response by maintaining the replicative potential of GC and descendant memory B cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing autoreactive B cells edit their B cell antigen receptor (BCR) in the bone marrow and are clonally deleted when they fail to reexpress an innocent BCR. Here, inducible Cre-loxP-mediated gene inversion is used to change the specificity of the BCR on mature IgM+ IgD+ B cells in vivo to address the fate of lymphocytes encountering self-antigens at this developmental stage. Expression of an autoreactive BCR on mature B cells leads to their rapid elimination from the periphery, a process that is inhibited by constitutive bcl-2 transgene expression in an antigen dose-dependent manner. Thus, selection of mature B cells into the long-lived peripheral pool does not prevent their deletion upon encounter of self-antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulation of inhibitory neurotransmitter receptors, such as γ-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has mutated GIRK2 channels and shows abnormal development. To understand how the function of GIRK2 channels differs in these two mutant mice, we compared the G protein-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from Girk2 null mutant and weaver mutant mice with those from wild-type mice. Activation of GABAB receptors in wild-type granule cells induced an inwardly rectifying K+ current, which was sensitive to pertussis toxin and inhibited by external Ba2+ ions. The amplitude of the GABAB receptor-activated current was severely attenuated in granule cells isolated from both weaver and Girk2 null mutant mice. By contrast, the G protein-gated inwardly rectifying current and possibly the agonist-independent basal current appeared to be less selective for K+ ions in weaver but not Girk2 null mutant granule cells. Our results support the hypothesis that a nonselective current leads to the weaver phenotype. The loss of GABAB receptor-activated GIRK current appears coincident with the absence of GIRK2 channel protein and the reduction of GIRK1 channel protein in the Girk2 null mutant mouse, suggesting that GABAB receptors couple to heteromultimers composed of GIRK1 and GIRK2 channel subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have suggested that the retention of selectable marker cassettes (like PGK–Neo, in which a hybrid gene consisting of the phosphoglycerate kinase I promoter drives the neomycin phosphotransferase gene) in targeted loci can cause unexpected phenotypes in “knockout” mice due to disruption of expression of neighboring genes within a locus. We have studied targeted mutations in two multigene clusters, the granzyme B locus and the β-like globin gene cluster. The insertion of PGK–Neo into the granzyme B gene, the most 5′ gene in the granzyme B gene cluster, severely reduced the normal expression of multiple genes within the locus, even at distances greater than 100 kb from the mutation. Similarly, the insertion of a PGK–Neo cassette into the β-globin locus control region (LCR) abrogates the expression of multiple globin genes downstream from the cassette. In contrast, a targeted mutation of the promyelocyte-specific cathepsin G gene (which lies just 3′ to the granzyme genes in the same cluster) had minimal effects on upstream granzyme gene expression. Although the mechanism of these long distance effects are unknown, the expression of PGK–Neo can be “captured” by the regulatory domain into which it is inserted. These results suggest that the PGK–Neo cassette can interact productively with locus control regions and thereby disrupt normal interactions between local and long-distance regulatory regions within a tissue-specific domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The congenital long QT syndrome (LQTS) is an inherited disorder characterized by a prolonged cardiac action potential. This delay in cellular repolarization can lead to potentially fatal arrhythmias. One form of LQTS (LQT3) has been linked to the human cardiac voltage-gated sodium channel gene (SCN5A). Three distinct mutations have been identified in the sodium channel gene. The biophysical and functional characteristics of each of these mutant channels were determined by heterologous expression of a recombinant human heart sodium channel in a mammalian cell line. Each mutation caused a sustained, non-inactivating sodium current amounting to a few percent of the peak inward sodium current, observable during long (>50 msec) depolarizations. The voltage dependence and rate of inactivation were altered, and the rate of recovery from inactivation was changed compared with wild-type channels. These mutations in diverse regions of the ion channel protein, all produced a common defect in channel gating that can cause the long QT phenotype. The sustained inward current caused by these mutations will prolong the action potential. Furthermore, they may create conditions that promote arrhythmias due to prolonged depolarization and the altered recovery from inactivation. These results provide insights for successful intervention in the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, mitochondria have emerged as important targets of agonist-dependent increases in cytosolic Ca2+ concentration. Here, we analyzed the significance of Ca2+ signals for the modulation of organelle function by directly measuring mitochondrial and cytosolic ATP levels ([ATP]m and [ATP]c, respectively) with specifically targeted chimeras of the ATP-dependent photoprotein luciferase. In both HeLa cells and primary cultures of skeletal myotubes, stimulation with agonists evoking cytosolic and mitochondrial Ca2+ signals caused increases in [ATP]m and [ATP]c that depended on two parameters: (i) the amplitude of the Ca2+ rise in the mitochondrial matrix, and (ii) the availability of mitochondrial substrates. Moreover, the Ca2+ elevation induced a long-lasting priming that persisted long after agonist washout and caused a major increase in [ATP]m upon addition of oxidative substrates. These results demonstrate a direct role of mitochondrial Ca2+ in driving ATP production and unravel a form of cellular memory that allows a prolonged metabolic activation in stimulated cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, cryoelectron microscopy of isolated macromolecular complexes has advanced to resolutions below 10 Å, enabling direct visualization of α-helical secondary structure. To help correlate such density maps with the amino acid sequences of the component proteins, we advocate peptide-based difference mapping, i.e., insertion of peptides, ≈10 residues long, at targeted points in the sequence and visualization of these peptides as bulk labels in cryoelectron microscopy-derived difference maps. As proof of principle, we have appended an extraneous octapeptide at the N terminus of hepatitis B virus capsid protein and determined its location on the capsid surface by difference imaging at 11 Å resolution. Hepatitis B virus capsids are icosahedral particles, ≈300 Å in diameter, made up of T-shaped dimers (subunit Mr, 16–21 kDa, depending on construct). The stems of the Ts protrude outward as spikes, whereas the crosspieces pack to form the contiguous shell. The two N termini per dimer reside on either side of the spike-stem, at the level at which it enters the shell. This location is consistent with formation of the known intramolecular disulfide bond between the cysteines at positions 61 and −7 (in the residual propeptide) in the “e-antigen” form of the capsid protein and has implications for why this clinically important antigen remains unassembled in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Fcα receptor probe of human origin was used to identify novel members of the Ig gene superfamily in mice. Paired Ig-like receptors, named PIR-A and PIR-B, are predicted from sequence analysis of the cDNAs isolated from a mouse splenic library. Both type I transmembrane proteins possess similar ectodomains with six Ig-like loops, but have different transmembrane and cytoplasmic regions. The predicted PIR-A protein has a short cytoplasmic tail and a charged Arg residue in the transmembrane region that, by analogy with the FcαR relative, suggests the potential for association with an additional transmembrane protein to form a signal transducing unit. In contrast, the PIR-B protein has an uncharged transmembrane region and a long cytoplasmic tail containing four potential immunoreceptor tyrosine-based inhibitory motifs. These features are shared by the related killer inhibitory receptors. PIR-A proteins appear to be highly variable, in that predicted peptide sequences differ for seven randomly selected PIR-A clones, whereas PIR-B cDNA clones are invariant. Southern blot analysis with PIR-B and PIR-A-specific probes suggests only one PIR-B gene and multiple PIR-A genes. The PIR-A and PIR-B genes are expressed in B lymphocytes and myeloid lineage cells, wherein both are expressed simultaneously. The characteristics of the highly-conserved PIR-A and PIR-B genes and their coordinate cellular expression suggest a potential regulatory role in humoral, inflammatory, and allergic responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome b-type NAD(P)H oxidoreductases are involved in many physiological processes, including iron uptake in yeast, the respiratory burst, and perhaps oxygen sensing in mammals. We have identified a cytosolic cytochrome b-type NAD(P)H oxidoreductase in mammals, a flavohemoprotein (b5+b5R) containing cytochrome b5 (b5) and b5 reductase (b5R) domains. A genetic approach, using blast searches against dbest for FAD-, NAD(P)H-binding sequences followed by reverse transcription–PCR, was used to clone the complete cDNA sequence of human b5+b5R from the hepatoma cell line Hep 3B. Compared with the classical single-domain b5 and b5R proteins localized on endoplasmic reticulum membrane, b5+b5R also has binding motifs for heme, FAD, and NAD(P)H prosthetic groups but no membrane anchor. The human b5+b5R transcript was expressed at similar levels in all tissues and cell lines that were tested. The two functional domains b5* and b5R* are linked by an approximately 100-aa-long hinge bearing no sequence homology to any known proteins. When human b5+b5R was expressed as c-myc adduct in COS-7 cells, confocal microscopy revealed a cytosolic localization at the perinuclear space. The recombinant b5+b5R protein can be reduced by NAD(P)H, generating spectrum typical of reduced cytochrome b with alpha, beta, and Soret peaks at 557, 527, and 425 nm, respectively. Human b5+b5R flavohemoprotein is a NAD(P)H oxidoreductase, demonstrated by superoxide production in the presence of air and excess NAD(P)H and by cytochrome c reduction in vitro. The properties of this protein make it a plausible candidate oxygen sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery that peptide nucleic acids (PNA) mimic DNA and RNA by forming complementary duplex structures following Watson–Crick base pairing rules opens fields in biochemistry, diagnostics, and medicine for exploration. Progress requires the development of modified PNA duplexes having unique and well defined properties. We find that anthraquinone groups bound to internal positions of a PNA oligomer intercalate in the PNA–DNA hybrid. Their irradiation with near-UV light leads to electron transfer and oxidative damage at remote GG doublets on the complementary DNA strand. This behavior mimics that observed in related DNA duplexes and provides the first evidence for long range electron (hole) transport in PNA–DNA hybrid. Analysis of the mechanism for electron transport supports hole hopping.