32 resultados para logistics controlling

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using temperature-derivative spectroscopy in the temperature range below 100 K, we have studied the dependence of the Soret band on the recombination barrier in sperm whale carbonmonoxy myoglobin (MbCO) after photodissociation at 12 K. The spectra were separated into contributions from the photodissociated species, Mb*CO, and CO-bound myoglobin. The line shapes of the Soret bands of both photolyzed and liganded myoglobin were analyzed with a model that takes into account the homogeneous bandwidth, coupling of the electronic transition to vibrational modes, and static conformational heterogeneity. The analysis yields correlations between the activation enthalpy for rebinding and the model parameters that characterize the homogeneous subensembles within the conformationally heterogeneous ensemble. Such couplings between spectral and functional parameters arise when they both originate from a common structural coordinate. This effect is frequently denoted as “kinetic hole burning.” The study of these correlations gives direct insights into the structure–function relationship in proteins. On the basis of earlier work that assigned spectral parameters to geometric properties of the heme, the connections with the heme geometry are discussed. We show that two separate structural coordinates influence the Soret line shape, but only one of the two is coupled to the enthalpy barrier for rebinding. We give evidence that this coordinate, contrary to widespread belief, is not the iron displacement from the mean heme plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The state-to-state transfer of rotational and vibrational energy has been studied for S1 glyoxal (CHOCHO) in collisions with D2, N2, CO and C2H4 using crossed molecular beams. A laser is used to pump glyoxal seeded in He to its S1 zero point level with zero angular momentum about its top axis (K′ = 0). The inelastic scattering to each of at least 26 S1 glyoxal rotational and rovibrational levels is monitored by dispersed S1–S0 fluorescence. Various collision partners are chosen to investigate the relative influences of reduced mass and the collision pair interaction potential on the competition among the energy transfer channels. When the data are combined with that obtained previously from other collision partners whose masses range from 2 to 84 amu, it is seen that the channel competition is controlled primarily by the kinematics of the collisional interaction. Variations in the intermolecular potential play strictly a secondary role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TFIIH is a multifunctional RNA polymerase II transcription factor that possesses DNA-dependent ATPase, DNA helicase, and protein kinase activities. Previous studies have established that TFIIH enters the preinitiation complex and fulfills a critical role in initiation by catalyzing ATP-dependent formation of the open complex prior to synthesis of the first phosphodiester bond of nascent transcripts. In this report, we present direct evidence that TFIIH also controls RNA polymerase II activity at a postinitiation stage of transcription, by preventing premature arrest by very early elongation complexes just prior to their transition to stably elongating complexes. Unexpectedly, we observe that TFIIH is capable of entering the transcription cycle not only during assembly of the preinitiation complex but also after initiation and synthesis of as many as four to six phosphodiester bonds. These findings shed new light on the role of TFIIH in initiation and promoter escape and reveal an unanticipated flexibility in the ability of TFIIH to interact with RNA polymerase II transcription intermediates prior to, during, and immediately after initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During vertebrate limb development, growth plate chondrocytes undergo temporally and spatially coordinated differentiation that is necessary for proper morphogenesis. Parathyroid hormone-related peptide (PTHrP), its receptor, the PTH/PTHrP receptor, and Indian hedgehog are implicated in the regulation of chondrocyte differentiation, but the specific cellular targets of these molecules and specific cellular interactions involved have not been defined. Here we generated chimeric mice containing both wild-type and PTH/PTHrP receptor (−/−) cells, and analyzed cell–cell interactions in the growth plate in vivo. Abnormal differentiation of mutant cells shows that PTHrP directly signals to the PTH/PTHrP receptor on proliferating chondrocytes to slow their differentiation. The presence of ectopically differentiated mutant chondrocytes activates the Indian hedgehog/PTHrP axis and slows differentiation of wild-type chondrocytes. Moreover, abnormal chondrocyte differentiation affects mineralization of cartilaginous matrix in a non-cell autonomous fashion; matrix mineralization requires a critical mass of adjacent ectopic hypertrophic chondrocytes. Further, ectopic hypertrophic chondrocytes are associated with ectopic bone collars in adjacent perichondrium. Thus, the PTH/PTHrP receptor directly controls the pace and synchrony of chondrocyte differentiation and thereby coordinates development of the growth plate and adjacent bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate, by using mathematical modeling of cell division cycle (CDC) dynamics, a potential mechanism for precisely controlling the frequency of cell division and regulating the size of a dividing cell. Control of the cell cycle is achieved by artificially expressing a protein that reversibly binds and inactivates any one of the CDC proteins. In the simplest case, such as the checkpoint-free situation encountered in early amphibian embryos, the frequency of CDC oscillations can be increased or decreased by regulating the rate of synthesis, the binding rate, or the equilibrium constant of the binding protein. In a more complex model of cell division, where size-control checkpoints are included, we show that the same reversible binding reaction can alter the mean cell mass in a continuously dividing cell. Because this control scheme is general and requires only the expression of a single protein, it provides a practical means for tuning the characteristics of the cell cycle in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To create a universal system for the control of gene expression, we have studied methods for the construction of novel polydactyl zinc finger proteins that recognize extended DNA sequences. Elsewhere we have described the generation of zinc finger domains recognizing sequences of the 5′-GNN-3′ subset of a 64-member zinc finger alphabet. Here we report on the use of these domains as modular building blocks for the construction of polydactyl proteins specifically recognizing 9- or 18-bp sequences. A rapid PCR assembly method was developed that, together with this predefined set of zinc finger domains, provides ready access to 17 million novel proteins that bind the 5′-(GNN)6-3′ family of 18-bp DNA sites. To examine the efficacy of this strategy in gene control, the human erbB-2 gene was chosen as a model. A polydactyl protein specifically recognizing an 18-bp sequence in the 5′-untranslated region of this gene was converted into a transcriptional repressor by fusion with Krüppel-associated box (KRAB), ERD, or SID repressor domains. Transcriptional activators were generated by fusion with the herpes simplex VP16 activation domain or with a tetrameric repeat of VP16’s minimal activation domain, termed VP64. We demonstrate that both gene repression and activation can be achieved by targeting designed proteins to a single site within the transcribed region of a gene. We anticipate that gene-specific transcriptional regulators of the type described here will find diverse applications in gene therapy, functional genomics, and the generation of transgenic organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The murine B29 (Igβ) promoter is B cell specific and contains essential SP1, ETS, OCT, and Ikaros motifs. Flanking 5′ DNA sequences inhibit B29 promoter activity, suggesting this region contains silencer elements. Two adjacent 5′ DNA segments repress transcription by the murine B29 promoter in a position- and orientation-independent manner, analogous to known silencers. Both these 5′ segments also inhibit transcription by several heterologous promoters in B cells, including mb-1, c-fos, and human B29. These 5′ segments also inhibit transcription by the c-fos promoter in T cells suggesting they are not B cell-specific elements. DNase I footprint analyses show an approximately 70-bp protected region overlapping the boundary between the two negative regulatory DNA segments and corresponding to binding sites for at least two different DNA-binding proteins. Within this footprint, two unrelated 30-bp cis-acting DNA motifs (designated TOAD and FROG) function as position- and orientation-independent silencers when located directly 5′ of the murine B29 promoter. These two silencer motifs act cooperatively to restrict the transcriptional activity of the B29 promoter. Neither of these motifs resembles any known silencers. Mutagenesis of the TOAD and FROG motifs in their respective 5′ DNA segments eliminates the silencing activity of these upstream regions, indicating these two motifs as the principal B29 silencer elements within these regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-methyl-d-aspartate receptor (NMDAR) activation has been implicated in forms of synaptic plasticity involving long-term changes in neuronal structure, function, or protein expression. Transcriptional alterations have been correlated with NMDAR-mediated synaptic plasticity, but the problem of rapidly targeting new proteins to particular synapses is unsolved. One potential solution is synapse-specific protein translation, which is suggested by dendritic localization of numerous transcripts and subsynaptic polyribosomes. We report here a mechanism by which NMDAR activation at synapses may control this protein synthetic machinery. In intact tadpole tecta, NMDAR activation leads to phosphorylation of a subset of proteins, one of which we now identify as the eukaryotic translation elongation factor 2 (eEF2). Phosphorylation of eEF2 halts protein synthesis and may prepare cells to translate a new set of mRNAs. We show that NMDAR activation-induced eEF2 phosphorylation is widespread in tadpole tecta. In contrast, in adult tecta, where synaptic plasticity is reduced, this phosphorylation is restricted to short dendritic regions that process binocular information. Biochemical and anatomical evidence shows that this NMDAR activation-induced eEF2 phosphorylation is localized to subsynaptic sites. Moreover, eEF2 phosphorylation is induced by visual stimulation, and NMDAR blockade before stimulation eliminates this effect. Thus, NMDAR activation, which is known to mediate synaptic changes in the developing frog, could produce local postsynaptic alterations in protein synthesis by inducing eEF2 phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae contains two genes, PDE1 and PDE2, which respectively encode a low-affinity and a high-affinity cAMP phosphodiesterase. The physiological function of the low-affinity enzyme Pde1 is unclear. We show that deletion of PDE1, but not PDE2, results in a much higher cAMP accumulation upon addition of glucose or upon intracellular acidification. Overexpression of PDE1, but not PDE2, abolished the agonist-induced cAMP increases. These results indicate a specific role for Pde1 in controlling glucose and intracellular acidification-induced cAMP signaling. Elimination of a putative protein kinase A (PKA) phosphorylation site by mutagenesis of serine252 into alanine resulted in a Pde1ala252 allele that apparently had reduced activity in vivo. Its presence in a wild-type strain partially enhanced the agonist-induced cAMP increases compared with pde1Δ. The difference between the Pde1ala252 allele and wild-type Pde1 was strongly dependent on PKA activity. In a RAS2val19 pde2Δ background, the Pde1ala252 allele caused nearly the same hyperaccumulation of cAMP as pde1Δ, while its expression in a PKA-attenuated strain caused the same reduction in cAMP hyperaccumulation as wild-type Pde1. These results suggest that serine252 might be the first target site for feedback inhibition of cAMP accumulation by PKA. We show that Pde1 is rapidly phosphorylated in vivo upon addition of glucose to glycerol-grown cells, and this activation is absent in the Pde1ala252 mutant. Pde1 belongs to a separate class of phosphodiesterases and is the first member shown to be phosphorylated. However, in vitro the Pde1ala252 enzyme had the same catalytic activity as wild-type Pde1, both in crude extracts and after extensive purification. This indicates that the effects of the S252A mutation are not caused by simple inactivation of the enzyme. In vitro phosphorylation of Pde1 resulted in a modest and variable increase in activity, but only in crude extracts. This was absent in Pde1ala252, and phosphate incorporation was strongly reduced. Apparently, phosphorylation of Pde1 does not change its intrinsic activity or affinity for cAMP but appears to be important in vivo for protein-protein interaction or for targeting Pde1 to a specific subcellular location. The PKA recognition site is conserved in the corresponding region of the Schizosaccharomyces pombe and Candida albicans Pde1 homologues, possibly indicating a similar control by phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the fission yeast Schizosaccharomyces pombe, passage from G1 to S-phase requires the execution of the transcriptional factor complex that consists of the Cdc10 and Res1/2 molecules. This complex activates the MluI cell cycle box cis-element contained in genes essential for S-phase onset and progression. The rep2+ gene, isolated as a multicopy suppressor of a temperature-sensitive cdc10 mutant, has been postulated to encode a putative transcriptional activator subunit for the Res2–Cdc10 complex. To identify the rep2+ function and molecularly define its domain organization, we reconstituted the Res2–Cdc10 complex-dependent transcriptional activation in Saccharomyces cerevisiae. Reconstitution experiments, deletion analyses using one and two hybrid systems, and in vivo Res2 coimmunoprecipitation assays show that the Res2–Cdc10 complex itself can recognize but cannot activate MluI cell cycle box without Rep2, and that consistent with its postulated function, Rep2 contains 45-amino acid Res2 binding and 22-amino acid transcriptional activation domains in the middle and C terminus of the molecule, respectively. The functional essentiality of these domains is also demonstrated by their requirement for rescue of the cold-sensitive rep2 deletion mutant of fission yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase–cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2, and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used the chemotactic ability of Dictyostelium cells to examine the roles of Rho family members, known regulators of the assembly of F-actin, in cell movement. Wild-type cells polarize with a leading edge enriched in F-actin toward a chemoattractant. Overexpression of constitutively active Dictyostelium Rac1B61L or disruption of DdRacGAP1, which encodes a Dictyostelium Rac1 GAP, induces membrane ruffles enriched with actin filaments around the perimeter of the cell and increased levels of F-actin in resting cells. Whereas wild-type cells move linearly toward the cAMP source, Rac1B61L and Ddracgap1 null cells make many wrong turns and chemotaxis is inefficient, which presumably results from the unregulated activation of F-actin assembly and pseudopod extension. Cells expressing dominant-negative DdRac1B17N do not have a well-defined F-actin-rich leading edge and do not protrude pseudopodia, resulting in very poor cell motility. From these studies and assays examining chemoattractant-mediated F-actin assembly, we suggest DdRac1 regulates the basal levels of F-actin assembly, its dynamic reorganization in response to chemoattractants, and cellular polarity during chemotaxis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription of CAB genes, encoding the chlorophyll a/b-binding proteins, is rapidly induced in dark-grown Arabidopsis seedlings following a light pulse. The transient induction is followed by several cycles of a circadian rhythm. Seedlings transferred to continuous light are known to exhibit a robust circadian rhythm of CAB expression. The precise waveform of CAB expression in light–dark cycles, however, reflects a regulatory network that integrates information from photoreceptors, from the circadian clock and possibly from a developmental program. We have used the luciferase reporter system to investigate CAB expression with high time resolution. We demonstrate that CAB expression in light-grown plants exhibits a transient induction following light onset, similar to the response in dark-grown seedlings. The circadian rhythm modulates the magnitude and the kinetics of the response to light, such that the CAB promoter is not light responsive during the subjective night. A signaling pathway from the circadian oscillator must therefore antagonize the phototransduction pathways controlling the CAB promoter. We have further demonstrated that the phase of maximal CAB expression is delayed in light–dark cycles with long photoperiods, due to the entrainment of the circadian oscillator. Under short photoperiods, this pattern of entrainment ensures that dawn coincides with a phase of high light responsiveness, whereas under long photoperiods, the light response at dawn is reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forced expression of gap junction proteins, connexins, enables gap junction-deficient cell lines to propagate intercellular calcium waves. Here, we show that ATP secretion from the poorly coupled cell lines, C6 glioma, HeLa, and U373 glioblastoma, is potentiated 5- to 15-fold by connexin expression. ATP release required purinergic receptor-activated intracellular Ca2+ mobilization and was inhibited by Cl− channel blockers. Calcium wave propagation also was reduced by purinergic receptor antagonists and by Cl− channel blockers but insensitive to gap junction inhibitors. These observations suggest that cell-to-cell signaling associated with connexin expression results from enhanced ATP release and not, as previously believed, from an increase in intercellular coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keratins 14 and 5 are the structural hallmarks of the basal keratinocytes of the epidermis and outer root sheath (ORS) of the hair follicle. Their genes are controlled in a tissue-specific manner and thus serve as useful tools to elucidate the regulatory mechanisms involved in keratinocyte-specific transcription. Previously we identified several keratinocyte-specific DNase I hypersensitive sites (HSs) in the 5′ regulatory sequences of the K14 gene and showed that a 700-bp regulatory domain encompassing HSs II and III can confer epidermal and ORS-specific gene expression in transgenic mice in vivo. Although HS II harbored much of the transactivation activity in vitro, it was not sufficient to restrict expression to keratinocytes in vivo. We now explore the HS III regulatory element. Surprisingly, this element on its own confers gene expression to the keratinocytes of the inner root sheath (IRS) of the hair follicle, whereas a 275-bp DNA fragment containing both HSs II and III shifts the expression from the IRS to the basal keratinocytes and ORS in vivo. Electrophoretic mobility-shift assays and mutational studies of HSs III reveal a role for CACCC-box binding proteins, Sp1 family members, and other factors adding to the list of previously described factors that are involved in keratinocyte-specific gene expression. These studies highlight a cooperative interaction of the two HSs domains and strengthen the importance of combinatorial play of transcription factors that govern keratinocyte-specific gene regulation.