25 resultados para localized irrigation

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that aminoacylation of minimal RNA helical substrates is enhanced by mismatched or unpaired nucleotides at the first position in the helix. Previously, we demonstrated that the class I methionyl-tRNA synthetase aminoacylates RNA microhelices based on the acceptor stem of initiator and elongator tRNAs with greatly reduced efficiency relative to full-length tRNA substrates. The cocrystal structure of the class I glutaminyl-tRNA synthetase with tRNAGln revealed an uncoupling of the first (1⋅72) base pair of tRNAGln, and tRNAMet was proposed by others to have a similar base-pair uncoupling when bound to methionyl-tRNA synthetase. Because the anticodon is important for efficient charging of methionine tRNA, we thought that 1⋅72 distortion is probably effected by the synthetase–anticodon interaction. Small RNA substrates (minihelices, microhelices, and duplexes) are devoid of the anticodon triplet and may, therefore, be inefficiently aminoacylated because of a lack of anticodon-triggered acceptor stem distortion. To test this hypothesis, we constructed microhelices that vary in their ability to form a 1⋅72 base pair. The results of kinetic assays show that microhelix aminoacylation is activated by destabilization of this terminal base pair. The largest effect is seen when one of the two nucleotides of the pair is completely deleted. Activation of aminoacylation is also seen with the analogous deletion in a minihelix substrate for the closely related isoleucine enzyme. Thus, for at least the methionine and isoleucine systems, a built-in helix destabilization compensates in part for the lack of presumptive anticodon-induced acceptor stem distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV), a herpesvirus that causes congenital disease and opportunistic infections in immunocompromised individuals, encodes functions that facilitate efficient viral propagation by altering host cell behavior. Here we show that CMV blocks apoptosis mediated by death receptors and encodes a mitochondria-localized inhibitor of apoptosis, denoted vMIA, capable of suppressing apoptosis induced by diverse stimuli. vMIA, a product of the viral UL37 gene, inhibits Fas-mediated apoptosis at a point downstream of caspase-8 activation and Bid cleavage but upstream of cytochrome c release, while residing in mitochondria and associating with adenine nucleotide translocator. These functional properties resemble those ascribed to Bcl-2; however, the absence of sequence similarity to Bcl-2 or any other known cell death suppressors suggests that vMIA defines a previously undescribed class of anti-apoptotic proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anti-atherogenic role of high density lipoprotein is well known even though the mechanism has not been established. In this study, we have used a novel model system to test whether removal of lipoprotein cholesterol from a localized depot will be affected by apolipoprotein A-I (apo A-I) deficiency. We compared the egress of cholesterol injected in the form of cationized low density lipoprotein into the rectus femoris muscle of apo A-I K-O and control mice. When the injected lipoprotein had been labeled with [3H]cholesterol, the t½ of labeled cholesterol loss from the muscle was about 4 days in controls and more than 7 days in apo A-I K-O mice. The loss of cholesterol mass had an initial slow (about 4 days) and a later more rapid component; after day 4, the disappearance curves for apo A-I K-O and controls began to diverge, and by day 7, the loss of injected cholesterol was significantly slower in apo A-I K-O than in controls. The injected lipoprotein cholesterol is about 70% in esterified form and undergoes hydrolysis, which by day 4 was similar in control and apo A-I K-O mice. The efflux potential of serum from control and apo A-I K-O mice was studied using media containing 2% native or delipidated serum. A significantly lower efflux of [3H]cholesterol from macrophages was found with native and delipidated serum from apo A-I K-O mice. In conclusion, these findings show that lack of apo A-I results in a delay in cholesterol loss from a localized depot in vivo and from macrophages in culture. These results provide support for the thesis that anti-atherogenicity of high density lipoprotein is related in part to its role in cholesterol removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic spines receive the vast majority of excitatory synaptic contacts in the mammalian brain and are presumed to contain machinery for the integration of various signal transduction pathways. Protein phosphatase 1 (PP1) is greatly enriched in dendritic spines and has been implicated in both the regulation of ionic conductances and long-term synaptic plasticity. The molecular mechanism whereby PP1 is localized to spines is unknown. We have now characterized a novel protein that forms a complex with the catalytic subunit of PP1 and is a potent modulator of PP1 enzymatic activity in vitro. Within the brain this protein displays a remarkably distinct localization to the heads of dendritic spines and has therefore been named spinophilin. Spinophilin has the properties expected of a scaffolding protein localized to the cell membrane and contains a single consensus sequence in PSD95/DLG/zo-1, which implies cross-linking of PP1 to transmembrane protein complexes. We propose that spinophilin represents a novel targeting subunit for PP1, which directs the enzyme to those substrates in the dendritic spine compartment, e.g., neurotransmitter receptors, which mediate the regulation of synaptic function by PP1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot–dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (Winey et al., 1991). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RanBP2, a protein containing FG repeat motifs and four binding sites for the guanosine triphosphatase Ran, is localized at the cytoplasmic periphery of the nuclear pore complex (NPC) and is believed to play a critical role in nuclear protein import. We purified RanBP2 from rat liver nuclear envelopes and examined its structural and biochemical properties. Electron microscopy showed that RanBP2 forms a flexible filamentous molecule with a length of ∼36 nm, suggesting that it comprises a major portion of the cytoplasmic fibrils implicated in initial binding of import substrates to the NPC. Using in vitro assays, we characterized the ability of RanBP2 to bind p97, a cytosolic factor implicated in the association of the nuclear localization signal receptor with the NPC. We found that RanGTP promotes the binding of p97 to RanBP2, whereas it inhibits the binding of p97 to other FG repeat nucleoporins. These data suggest that RanGTP acts to specifically target p97 to RanBP2, where p97 may support the binding of an nuclear localization signal receptor/substrate complex to RanBP2 in an early step of nuclear import.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated sodium channels perform critical roles for electrical signaling in the nervous system by generating action potentials in axons and in dendrites. At least 10 genes encode sodium channels in mammals, but specific physiological roles that distinguish each of these isoforms are not known. One possibility is that each isoform is expressed in a restricted set of cell types or is targeted to a specific domain of a neuron or muscle cell. Using affinity-purified isoform-specific antibodies, we find that Nav1.6 is highly concentrated at nodes of Ranvier of both sensory and motor axons in the peripheral nervous system and at nodes in the central nervous system. The specificity of this antibody was also demonstrated with the Nav1.6-deficient mouse mutant strain med, whose nodes were negative for Nav1.6 immunostaining. Both the intensity of labeling and the failure of other isoform-specific antibodies to label nodes suggest that Nav1.6 is the predominant channel type in this structure. In the central nervous system, Nav1.6 is localized in unmyelinated axons in the retina and cerebellum and is strongly expressed in dendrites of cortical pyramidal cells and cerebellar Purkinje cells. Ultrastructural studies indicate that labeling in dendrites is both intracellular and on dendritic shaft membranes. Remarkably, Nav1.6 labeling was observed at both presynaptic and postsynaptic membranes in the cortex and cerebellum. Thus, a single sodium channel isoform is targeted to different neuronal domains and can influence both axonal conduction and synaptic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autocrine ligands are important regulators of many normal tissues and have been implicated in a number of disease states, including cancer. However, because by definition autocrine ligands are synthesized, secreted, and bound to cell receptors within an intrinsically self-contained “loop,” standard pharmacological approaches cannot be used to investigate relationships between ligand/receptor binding and consequent cellular responses. We demonstrate here a new approach for measurement of autocrine ligand binding to cells, using a microphysiometer assay originally developed for investigating cell responses to exogenous ligands. This technique permits quantitative measurements of autocrine responses on the time scale of receptor binding and internalization, thus allowing investigation of the role of receptor trafficking and dynamics in cellular responses. We used this technique to investigate autocrine signaling through the epidermal growth factor receptor by transforming growth factor alpha (TGFα) and found that anti-receptor antibodies are far more effective than anti-ligand antibodies in inhibiting autocrine signaling. This result indicates that autocrine-based signals can operate in a spatially restricted, local manner and thus provide cells with information on their local microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5′-End fragments of two genes encoding plastid-localized acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) of wheat (Triticum aestivum) were cloned and sequenced. The sequences of the two genes, Acc-1,1 and Acc-1,2, are 89% identical. Their exon sequences are 98% identical. The amino acid sequence of the biotin carboxylase domain encoded by Acc-1,1 and Acc-1,2 is 93% identical with the maize plastid ACCase but only 80–84% identical with the cytosolic ACCases from other plants and from wheat. Four overlapping fragments of cDNA covering the entire coding region were cloned by PCR and sequenced. The wheat plastid ACCase ORF contains 2,311 amino acids with a predicted molecular mass of 255 kDa. A putative transit peptide is present at the N terminus. Comparison of the genomic and cDNA sequences revealed introns at conserved sites found in the genes of other plant multifunctional ACCases, including two introns absent from the wheat cytosolic ACCase genes. Transcription start sites of the plastid ACCase genes were estimated from the longest cDNA clones obtained by 5′-RACE (rapid amplification of cDNA ends). The untranslated leader sequence encoded by the Acc-1 genes is at least 130–170 nucleotides long and is interrupted by an intron. Southern analysis indicates the presence of only one copy of the gene in each ancestral chromosome set. The gene maps near the telomere on the short arm of chromosomes 2A, 2B, and 2D. Identification of three different cDNAs, two corresponding to genes Acc-1,1 and Acc-1,2, indicates that all three genes are transcriptionally active.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+/Cl−-dependent neurotransmitter transporters form a superfamily of transmembrane proteins that share 12 membrane-spanning regions. To gain information about the quaternary structure of these transporter proteins, we heterologously expressed the glial glycine transporter GlyT1 and its neuronal homolog GlyT2 in Xenopus oocytes. By using metabolic labeling with [35S]methionine or surface labeling with a plasma membrane impermeable reagent followed by affinity purification, we separately analyzed the total cellular pools of newly synthesized GlyTs and its functional plasma membrane-bound fractions. Upon blue native gel electrophoresis, the surface-localized transporter proteins were found to exist exclusively in complex-glycosylated monomeric form, whereas a significant fraction of the intracellular GlyT1 and GlyT2 was core-glycosylated and oligomeric. In contrast, even after treatment with the crosslinker glutaraldehyde, surface GlyTs failed to migrate as oligomeric proteins. These results indicate that plasma membrane-bound GlyT1 and GlyT2 are monomeric proteins. Thus, Na+/Cl−-dependent neurotransmitter transporters do not require oligomerization for substrate translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In neurons, translation of dendritically localized mRNAs is thought to play a role in affecting synaptic efficacy. Inasmuch as components of the translation machinery may be limiting in dendrites, we investigated the mechanisms by which translation of five dendritically localized mRNAs is initiated. The 5′ leader sequences of mRNAs encoding the activity-regulated cytoskeletal protein, the α subunit of calcium–calmodulin-dependent kinase II, dendrin, the microtubule-associated protein 2, and neurogranin (RC3) were evaluated for their ability to affect translation in the 5′ untranslated region of a monocistronic reporter mRNA. In both neural and nonneural cell lines, the activity-regulated cytoskeletal protein, microtubule-associated protein 2, and α-CaM Kinase II leader sequences enhanced translation, whereas the dendrin and RC3 5′ untranslated regions slightly inhibited translation as compared with controls. When cap-dependent translation of these constructs was suppressed by overexpression of a protein that binds the cap-binding protein eIF4E, it was revealed that translation of these mRNAs had both cap-dependent and cap-independent components. The cap-independent component was further analyzed by inserting the 5′ leader sequences into the intercistronic region of dicistronic mRNAs. All five leader sequences mediated internal initiation via internal ribosome entry sites (IRESes). The RC3 IRES was most active and was further characterized after transfection in primary neurons. Although translation mediated by this IRES occurred throughout the cell, it was relatively more efficient in dendrites. These data suggest that IRESes may increase translation efficiency at postsynaptic sites after synaptic activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We localized the multicopy plasmid RK2 in Escherichia coli and found that the number of fluorescent foci observed in each cell was substantially less than the copy number of the plasmid, suggesting that many copies of RK2 are grouped into a few multiplasmid clusters. In minimal glucose media, the majority of cells had one or two foci, with a single focus localized near midcell, and two foci near the 1/4 and 3/4 cell positions. The number of foci per cell increased with cell length and with growth rate, and decreased upon entering stationary phase, suggesting a coordination of RK2 replication or segregation with the bacterial cell cycle. Time-lapse microscopy demonstrated that partitioning of RK2 foci is achieved by the splitting of a single focus into two or three smaller foci, which are capable of separating with rapid kinetics. A derivative of the high-copy-number plasmid pUC19 containing the lacO array was also localized by tagging with GFP-LacI. Whereas many of the cells contained numerous, randomly diffusing foci, most cells exhibited one or two plasmid clusters located at midcell or the cell quarter positions. Our results suggest a model in which multicopy plasmids are not always randomly diffusing throughout the cell as previously thought, but can be replicated and partitioned in clusters targeted to specific locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In maize (Zea mays L.) two leaf-specific ferredoxin (Fd) isoproteins, Fd I and Fd II, are distributed differentially in mesophyll and bundle-sheath cells. A novel cDNA encoding the precursor of Fd II (pFD2) was isolated by heterologous hybridization using a cDNA for Fd I (pFD1) as a probe. The assignment of the cDNAs to the Fds was verified by capillary liquid-chromatography/electrospray ionization-mass spectrometry. RNA-blot analysis demonstrated that transcripts for Fd I and Fd II accumulated specifically in mesophyll and bundle-sheath cells, respectively. The mature regions of pFD1 and pFD2 were expressed in Escherichia coli as functional Fds. Fd I and Fd II had similar redox potentials of −423 and −406 mV, respectively, but the Km value of Fd-NADP+ reductase for Fd II was about 3-fold larger than that for Fd I. Asparagine at position 65 of Fd II is a unique residue compared with Fd I and other Fds from various plants, which have aspartic acid or glutamic acid at the corresponding position as an electrostatic interaction site with Fd-NADP+ reductase. Substitution of asparagine-65 with aspartic acid increased the affinity of Fd II with Fd-NADP+ reductase to a level comparable to that of Fd I. These structural and functional differences of Fd I and Fd II may be related to their cell-specific expression in the leaves of a C4 plant.