2 resultados para lithium-metal battery

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observers have found a small number of lithium-depleted halo stars in the temperature range of the Spite plateau. The current status of the mass-loss hypothesis for producing the observed lithium dip in Population (Pop) I stars is briefly discussed and extended to Pop II stars as a possible explanation for these halo objects. Based on detections of F-type main-sequence variables, mass loss is assumed to occur in a narrow temperature region corresponding to this “instability strip.” As Pop II main-sequence stars evolve to the blue, they enter this narrow temperature region, then move back through the lower temperature area of the Spite plateau. If 0.05 M⊙ (solar mass) or more have been lost, they will show lithium depletion. This hypothesis affects the lithium-to- beryllium abundance, the ratio of high- to low-lithium stars, and the luminosity function. Constraints on the mass-loss hypothesis due to these effects are discussed. Finally, mass loss in this temperature range would operate in stars near the turnoff of metal-poor globular clusters, resulting in apparent ages 2 to 3 Gyr (gigayears) older than they actually are.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fructose-1,6-bisphosphatase (Fru-1,6-Pase; D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) requires two divalent metal ions to hydrolyze alpha-D-fructose 1,6-bisphosphate. Although not required for catalysis, monovalent cations modify the enzyme activity; K+ and Tl+ ions are activators, whereas Li+ ions are inhibitors. Their mechanisms of action are still unknown. We report here crystallographic structures of pig kidney Fru-1,6-Pase complexed with K+, Tl+, or both Tl+ and Li+. In the T form Fru-1,6-Pase complexed with the substrate analogue 2,5-anhydro-D-glucitol 1,6-bisphosphate (AhG-1,6-P2) and Tl+ or K+ ions, three Tl+ or K+ binding sites are found. Site 1 is defined by Glu-97, Asp-118, Asp-121, Glu-280, and a 1-phosphate oxygen of AhG-1,6-P2; site 2 is defined by Glu-97, Glu-98, Asp-118, and Leu-120. Finally, site 3 is defined by Arg-276, Glu-280, and the 1-phosphate group of AhG-1,6-P2. The Tl+ or K+ ions at sites 1 and 2 are very close to the positions previously identified for the divalent metal ions. Site 3 is specific to K+ or Tl+. In the divalent metal ion complexes, site 3 is occupied by the guanidinium group of Arg-276. These observations suggest that Tl+ or K+ ions can substitute for Arg-276 in the active site and polarize the 1-phosphate group, thus facilitating nucleophilic attack on the phosphorus center. In the T form complexed with both Tl+ and Li+ ions, Li+ replaces Tl+ at metal site 1. Inhibition by lithium very likely occurs as it binds to this site, thus retarding turnover or phosphate release. The present study provides a structural basis for a similar mechanism of inhibition for inositol monophosphatase, one of the potential targets of lithium ions in the treatment of manic depression.