4 resultados para lipoxygenases
em National Center for Biotechnology Information - NCBI
Resumo:
Members of the lipoxygenase multigene family, found widely in eukaryotes, have been proposed to function in nitrogen partitioning and storage in plants. Lipoxygenase gene responses to source-sink manipulations in mature soybean (Glycine max [L.] Merr.) leaves were examined using gene-specific riboprobes to the five vegetative lipoxygenases (vlxA–vlxE). Steady-state levels of all vlx mRNAs responded strongly to sink limitation, but specific transcripts exhibited differential patterns of response as well. During reproductive sink limitation, vlxA and vlxB messages accumulated to high levels, whereas vlxC and vlxD transcript levels were modest. Immunolocalization using peptide-specific antibodies demonstrated that under control conditions, VLXB was present in the cytosol of the paraveinal mesophyll and with pod removal accumulated additionally in the bundle-sheath and adjacent cells. With sink limitation VLXD accumulated to apparent high levels in the vacuoles of the same cells. Segregation of gene products at the cellular and subcellular levels may thus permit complex patterns of differential regulation within the same cell type. Specific lipoxygenase isoforms may have a role in short-term nitrogen storage (VLXC/D), whereas others may simultaneously function in assimilate partitioning as active enzymes (VLXA/B).
Resumo:
Arachidonic acid (AA) metabolites derived from both cyclooxygenase (COX) and lipoxygenase (LOX) pathways transduce a variety of signals related to cell growth. Here, we report that the AA LOX pathway also functions as a critical regulator of cell survival and apoptosis. Rat Walker 256 (W256) carcinosarcoma cells express 12-LOX and synthesize 12(S)- and 15(S)-hydroxyeicosatetraenoic acids as their major LOX metabolites. W256 cells transfected with 12-LOX-specific antisense oligonucleotide or antisense oligonucleotides directed to conserved regions of LOXs underwent time- and dose-dependent apoptosis. Likewise, treatment of W256 cells with various LOX but not COX inhibitors induced apoptotic cell death, which could be partially inhibited by exogenous 12(S)- or 15(S)-hydroxyeicosatetraenoic acids. The W256 cell apoptosis induced by antisense oligos and LOX inhibitors was followed by a rapid downregulation of bcl-2 protein, a dramatic decrease in the bcl-2/bax ratio, and could be suppressed by bcl-2 overexpression. In contrast, p53, which is wild type in W256 cells, did not undergo alterations during apoptosis induction. The results suggest that the LOX pathway plays an important physiological role in regulating apoptosis.
Resumo:
A recognized feature of psoriasis and other proliferative dermatoses is accumulation in the skin of the unusual arachidonic acid metabolite, 12R-hydroxyeicosatetraenoic acid (12R-HETE). This hydroxy fatty acid is opposite in chirality to the product of the well-known 12S-lipoxygenase and heretofore in mammals is known only as a product of cytochrome P450s. Here we provide mechanistic evidence for a lipoxygenase route to 12R-HETE in human psoriatic tissue and describe a 12R-lipoxygenase that can account for the biosynthesis. Initially we demonstrated retention of the C-12 deuterium of octadeuterated arachidonic acid in its conversion to 12R-HETE in incubations of psoriatic scales, indicating the end product is not formed by isomerization from 12S-H(P)ETE via the 12-keto derivative. Secondly, analysis of product formed from [10R-3H] and [10S-3H]-labeled arachidonic acids revealed that 12R-HETE synthesis is associated with stereospecific removal of the pro-R hydrogen from the 10-carbon of arachidonate. This result is compatible with 12R-lipoxygenase-catalyzed formation of 12R-HETE and not with a P450-catalyzed route to 12R-HETE in psoriatic scales. We cloned a lipoxygenase from human keratinocytes; the cDNA and deduced amino acid sequences share ≤50% identity to other human lipoxygenases. This enzyme, when expressed in Hela cells, oxygenates arachidonic acid to 12-HPETE, >98% 12R in configuration. The 12R-lipoxygenase cDNA is detectable by PCR in psoriatic scales and as a 2.5-kilobase mRNA by Northern analysis of keratinocytes. Identification of this enzyme extends the known distribution of R-lipoxygenases to humans and presents an additional target for potential therapeutic interventions in psoriasis.
Resumo:
Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.