17 resultados para linfoid organ

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hearing loss is most often the result of hair-cell degeneration due to genetic abnormalities or ototoxic and traumatic insults. In the postembryonic and adult mammalian auditory sensory epithelium, the organ of Corti, no hair-cell regeneration has ever been observed. However, nonmammalian hair-cell epithelia are capable of regenerating sensory hair cells as a consequence of nonsensory supporting-cell proliferation. The supporting cells of the organ of Corti are highly specialized, terminally differentiated cell types that apparently are incapable of proliferation. At the molecular level terminally differentiated cells have been shown to express high levels of cell-cycle inhibitors, in particular, cyclin-dependent kinase inhibitors [Parker, S. B., et al. (1995) Science 267, 1024–1027], which are thought to be responsible for preventing these cells from reentering the cell cycle. Here we report that the cyclin-dependent kinase inhibitor p27Kip1 is selectively expressed in the supporting-cell population of the organ of Corti. Effects of p27Kip1-gene disruption include ongoing cell proliferation in postnatal and adult mouse organ of Corti at time points well after mitosis normally has ceased during embryonic development. This suggests that release from p27Kip1-induced cell-cycle arrest is sufficient to allow supporting-cell proliferation to occur. This finding may provide an important pathway for inducing hair-cell regeneration in the mammalian hearing organ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strategy to achieve regular and long lasting organ and tissue allografts without using immunosuppressants and/or irradiation has been established for mice. One hundred percent of skin allografts can be induced to survive >350 days after transplantation if spleen cells from the same donors are first injected into the portal vein of the recipients. The mechanisms underlying this long-term tolerance induction can be described as follows: (i) donor T cells from the spleen of the donor facilitate the acceptance of the allogeneic engraftment, (ii) donor-specific anergy is induced in the cytotoxic T-lymphocytes of the recipients, (iii) T helper type 2 cells become the dominant T cells in the recipients that are accepting the skin transplants, and (iv) a lasting chimerism (microchimerism) is established in these recipients. This strategy, perhaps with minor modifications, might permit one also to overcome major barriers to organ allografting in humans. If this were the case, it could represent production of long lasting immunologic tolerance without need for irradiation or cytotoxic chemo-preparative regimen and as such could greatly facilitate allotransplantation free of episodes of chronic or acute rejection or toxic and damaging preparatory regimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 μm (SE 2 μm). Partial or complete recovery was seen within 30–45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA vaccines that encode encephalitogenic sequences in tandem can protect from subsequent experimental autoimmune encephalomyelitis induced with the corresponding peptide. The mechanism for this protection and, in particular, if it is specific for the amino acid sequence encoding the vaccine are not known. We show here that a single amino acid exchange in position 79 from serine (nonself) to threonine (self) in myelin basic protein peptide MBP68–85, which is a major encephalitogenic determinant for Lewis rats, dramatically alters the protection. Moreover, vaccines encoding the encephalitogenic sequence MBP68–85 do not protect against the second encephalitogenic sequence MBP89–101 in Lewis rats and vice versa. Thus, protective immunity conferred by DNA vaccination exquisitely discriminates between peptide target autoantigens. No bystander suppression was observed. The exact underlying mechanisms remain elusive because no simple correlation between impact on ex vivo responses and protection against disease were noted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hymenoptera attach to smooth surfaces with a flexible pad, the arolium, between the claws. Here we investigate its movement in Asian weaver ants (Oecophylla smaragdina) and honeybees (Apis mellifera).  When ants run upside down on a smooth surface, the arolium is unfolded and folded back with each step. Its extension is strictly coupled with the retraction of the claws. Experimental pull on the claw-flexor tendon revealed that the claw-flexor muscle not only retracts the claws, but also moves the arolium. The elicited arolium movement comprises (i) about a 90° rotation (extension) mediated by the interaction of the two rigid pretarsal sclerites arcus and manubrium and (ii) a lateral expansion and increase in volume. In severed legs of O. smaragdina ants, an increase in hemolymph pressure of 15 kPa was sufficient to inflate the arolium to its full size. Apart from being actively extended, an arolium in contact also can unfold passively when the leg is subject to a pull toward the body.  We propose a combined mechanical–hydraulic model for arolium movement: (i) the arolium is engaged by the action of the unguitractor, which mechanically extends the arolium; (ii) compression of the arolium gland reservoir pumps liquid into the arolium; (iii) arolia partly in contact with the surface are unfolded passively when the legs are pulled toward the body; and (iv) the arolium deflates and moves back to its default position by elastic recoil of the cuticle.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specification of unequal daughter cell fates in the Drosophila external sense organ lineage requires asymmetric localization of the intrinsic determinant Numb as well as cell-cell interactions mediated by the Delta ligand and Notch receptor. Previous genetic studies indicated that numb acts upstream of Notch, and biochemical studies revealed that Numb can bind Notch. For a functional assay of the action of Numb on Notch signaling, we expressed these proteins in cultured Drosophila cells and used nuclear translocation of Suppressor of Hairless [Su(H)] as a reporter for Notch activity. We found that Numb interfered with the ability of Notch to cause nuclear translocation of Su(H); both the C-terminal half of the phosphotyrosine binding domain and the C terminus of Numb are required to inhibit Notch. Overexpression of Numb during wing development, which is sensitive to Notch dosage, revealed that Numb is also able to inhibit the Notch receptor in vivo. In the external sense organ lineage, the phosphotyrosine binding domain of Numb was found to be essential for the function but not for asymmetric localization of Numb. Our results suggest that Numb determines daughter cell fates in the external sense organ lineage by inhibiting Notch signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homeobox genes encode a large family of homeodomain proteins that play a key role in the pattern formation of animal embryos. By analogy, homeobox genes in plants are thought to mediate important processes in their embryogenesis, but there is very little evidence to support this notion. Here we described the temporal and spatial expression patterns of a rice homeobox gene, OSH1, during rice embryogenesis. In situ hybridization analysis revealed that in the wild-type embryo, OSH1 was first expressed at the globular stage, much earlier than organogenesis started, in a ventral region where shoot apical meristem and epiblast would later develop. This localized expression of OSH1 indicates that the cellular differentiation has already occurred at this stage. At later stages after organogenesis had initiated, OSH1 expression was observed in shoot apical meristem [except in the L1 (tunica) layer], epiblast, radicle, and their intervening tissues in descending strength of expression level with embryonic maturation. We also performed in situ hybridization analysis with a rice organless embryo mutant, orl1, that develops no embryonic organs. In the orl1 embryo, the expression pattern of OSH1 was the same as that in the wild-type embryo in spite of the lack of embryonic organs. This shows that OSH1 is not directly associated with organ differentiation, but may be related to a regulatory process before or independent of the organ determination. The results described here strongly suggest that, like animal homeobox genes, OSH1 plays an important role in regionalization of cell identity during early embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmitting tissue-specific (TTS) protein is a pollen tube growth-promoting and attracting glycoprotein located in the stylar transmitting tissue extracellular matrix of the pistil of tobacco. The TTS protein backbones have a deduced molecular mass of about 28 kDa, whereas the glycosylated stylar TTS proteins have apparent molecular masses ranging between 50 and 100 kDa. TTS mRNAs and proteins are ectopically produced in transgenic tobacco plants that express either a cauliflower mosaic virus (CaMV) 35S promoter-TTS2 transgene or a CaMV 35S-promoter-NAG1 (NAG1 = Nicotiana tabacum Agamous gene) transgene. However, the patterns of TTS mRNA and protein accumulation and the quality of the TTS proteins produced are different in these two types of transgenic plants. In 35S-TTS transgenic plants, TTS mRNAs and proteins accumulate constitutively in vegetative and floral tissues. However, the ectopically expressed TTS proteins in these transgenic plants accumulate as underglycosylated protein species with apparent molecular masses between 30 and 50 kDa. This indicates that the capacity to produce highly glycosylated TTS proteins is restricted to the stylar transmitting tissue. In 35S-NAG transgenic plants, NAG1 mRNAs accumulate constitutively in vegetative and floral tissues, and TTS mRNAs are induced in the sepals of these plants. Moreover, highly glycosylated TTS proteins in the 50- to 100-kDa molecular mass range accumulate in the sepals of these transgenic, 35S-NAG plants. These results show that the tobacco NAGI gene, together with other yet unidentified regulatory factors, control the expression of TTS genes and the cellular capacity to glycosylate TTS proteins, which are normally expressed very late in the pistil developmental pathway and function in the final stage of floral development. The sepals in the transgenic 35S-NAG plants also support efficient pollen germination and tube growth, similar to what normally occurs in the pistil, and this ability correlates with the accumulation of the highest levels of the 50- to 100-kDa glycosylated TTS proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis MADS domain proteins AP1, AP3, PI, and AG specify floral organ identity. All of these proteins contain a MADS domain required for DNA binding and dimerization; a region termed L (linker between MADS domain and K domain), which plays an important role in dimerization specificity; the K domain, named for its similarity to the coiled-coil domain of keratin; and a C-terminal region of unknown function. To determine which regions of these proteins are responsible for their abilities to specify different organs, we have made a number of chimeric MADS box genes. The in vivo function of these chimeric genes was investigated by ectopic expression in transgenic Arabidopsis plants. The four proteins fall into two classes on the basis of regions responsible for their functional specificities. The L region and K domain define the functional specificities of AP3 and PI, while the MADS domain and L region define the functional specificities of AP1 and AG.