2 resultados para linear feedback shift register

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boronium-carbonium continuum was extended to include hypercoordinated protonated methanes and their boron analogs. The 11B NMR chemical shifts of the hypercoordinated hydriodo boron compounds and the 13C NMR chemical shifts of the corresponding isoelectronic and isostructural carbocations were calculated by using the GIAO-MP2 method. The data show good linear correlation between 11B and 13C NMR chemical shifts, which indicates that the same factors that determine the chemical shifts of the boron nuclei also govern the chemical shifts of carbon nuclei of these hypercoordinated hydriodo compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) are unable to synthesize the linear tetrapyrrole chromophore of phytochrome, resulting in plants with a yellow-green phenotype. To understand the basis of this phenotype, we investigated the consequences of the au and yg-2 mutations on tetrapyrrole metabolism. Dark-grown seedlings of both mutants have reduced levels of protochlorophyllide (Pchlide) due to an inhibition of Pchlide synthesis. Feeding experiments with the tetrapyrrole precursor 5-aminolevulinic acid (ALA) demonstrate that the pathway between ALA and Pchlide is intact in au and yg-2 and suggest that the reduction in Pchlide is a result of the inhibition of ALA synthesis. This inhibition was independent of any deficiency in seed phytochrome, and experiments using an iron chelator to block heme synthesis demonstrated that both mutations inhibited the degradation of the physiologically active heme pool, suggesting that the reduction in Pchlide synthesis is a consequence of feedback inhibition by heme. We discuss the significance of these results in understanding the chlorophyll-deficient phenotype of the au and yg-2 mutants.