18 resultados para lifespan extension
em National Center for Biotechnology Information - NCBI
Resumo:
Single-gene mutations that extend lifespan provide valuable tools for the exploration of the molecular basis for age-related changes in cell and tissue function and for the pathophysiology of age-dependent diseases. We show here that mice homozygous for loss-of-function mutations at the Pit1 (Snell dwarf) locus show a >40% increase in mean and maximal longevity on the relatively long-lived (C3H/HeJ × DW/J)F1 background. Mutant dwJ/dw animals show delays in age-dependent collagen cross-linking and in six age-sensitive indices of immune system status. These findings thus demonstrate that a single gene can control maximum lifespan and the timing of both cellular and extracellular senescence in a mammal. Pituitary transplantation into dwarf mice does not reverse the lifespan effect, suggesting that the effect is not due to lowered prolactin levels. In contrast, homozygosity for the Ghrhrlit mutation, which like the Pit1dw mutation lowers plasma growth hormone levels, does lead to a significant increase in longevity. Male Snell dwarf mice, unlike calorically restricted mice, become obese and exhibit proportionately high leptin levels in old age, showing that their exceptional longevity is not simply due to alterations in adiposity per se. Further studies of the Pit1dw mutant, and the closely related, long-lived Prop-1df (Ames dwarf) mutant, should provide new insights into the hormonal regulation of senescence, longevity, and late life disease.
Resumo:
Budding yeast cells divide asymmetrically, giving rise to a mother and its daughter. Mother cells have a limited division potential, called their lifespan, which ends in proliferation-arrest and lysis. In this report we mutate telomerase in Saccharomyces cerevisiae to shorten telomeres and show that, rather than shortening lifespan, this leads to a significant extension in lifespan. This extension requires the product of the SIR3 gene, an essential component of the silencing machinery which binds to telomeres. In contrast, longer telomeres in a genotypically wild-type strain lead to a decrease in lifespan. These findings suggest that the length of telomeres dictates the lifespan by regulating the amount of the silencing machinery available to nontelomeric locations in the yeast genome.
Resumo:
Human fibroblasts whose lifespan in culture has been extended by expression of a viral oncogene eventually undergo a growth crisis marked by failure to proliferate. It has been proposed that telomere shortening in these cells is the property that limits their proliferation. Here we report that ectopic expression of the wild-type reverse transcriptase protein (hTERT) of human telomerase averts crisis, at the same time reducing the frequency of dicentric and abnormal chromosomes. Surprisingly, as the resulting immortalized cells containing active telomerase continue to proliferate, their telomeres continue to shorten to mean lengths below those in control cells that enter crisis. These results provide evidence for a protective function of human telomerase that allows cell proliferation without requiring net lengthening of telomeres.
Resumo:
By using a simplified model of small open liquid-like clusters with surface effects, in the gas phase, it is shown how the statistical thermodynamics of small systems can be extended to include metastable supersaturated gaseous states not too far from the gas–liquid equilibrium transition point. To accomplish this, one has to distinguish between mathematical divergence and physical convergence of the open-system partition function.
Resumo:
It has long been suspected that proteolytic activity associated with advancing growth cones may be required for axon extension. We have isolated mutations in the kuzbanian (kuz) gene, which is expressed in the nervous system and encodes a putative zinc metalloprotease with a disintegrin domain. Drosophila embryos with loss-of-function mutations in kuz have dramatic defects in the development of central nervous system axon pathways, with many axons stalling and failing to extend through the nerve cord. This phenotype is rescued by panneural expression of kuz mRNA in the embryo. These results show that the Kuz metalloprotease is required for axon extension, suggesting a requirement for proteolytic activity at the growth cone surface.
Resumo:
We have investigated the process leading to differentiation of PC12 cells. This process is known to include extension of neurites and changes in the expression of subsets of proteins involved in cytoskeletal rearrangements or in neurosecretion. To this aim, we have studied a PC12 clone (trk-PC12) stably transfected with the nerve growth factor receptor TrkA. These cells are able to undergo both spontaneous and neurotrophin-induced morphological differentiation. However, both undifferentiated and nerve growth factor-differentiated trk-PC12 cells appear to be completely defective in the expression of proteins of the secretory apparatus, including proteins of synaptic vesicles and large dense-core granules, neurotransmitter transporters, and neurotransmitter-synthesizing enzymes. These results indicate that neurite extension can occur independently of the presence of the neurosecretory machinery, including the proteins that constitute the fusion machine, suggesting the existence of differential activation pathways for the two processes during neuronal differentiation. These findings have been confirmed in independent clones obtained from PC12-27, a previously characterized PC12 variant clone globally incompetent for regulated secretion. In contrast, the integrity of the Rab cycle appears to be necessary for neurite extension, because antisense oligonucleotides against the neurospecific isoform of Rab-guanosine diphosphate-dissociation inhibitor significantly interfere with process formation.
Resumo:
Normal human diploid fibroblasts have a finite replicative lifespan in vitro, which has been postulated to be a cellular manifestation of aging in vivo. Several studies have shown an inverse relationship between donor age and fibroblast culture replicative lifespan; however, in all cases, the correlation was weak, and, with few exceptions, the health status of the donors was unknown. We have determined the replicative lifespans of 124 skin fibroblast cell lines established from donors of different ages as part of the Baltimore Longitudinal Study of Aging. All of the donors were medically examined and were declared “healthy,” according to Baltimore Longitudinal Study of Aging protocols, at the time the biopsies were taken. Both long- and short-lived cell lines were observed in all age groups, but no significant correlation between the proliferative potential of the cell lines and donor age was found. A comparison of multiple cell lines established from the same donors at different ages also failed to reveal any significant trends between proliferative potential and donor age. The rate of [3H]thymidine incorporation and the initial rates of growth during the first few subcultivations were examined in a subset of cell lines and were found to be significantly greater in fetal lines than in postnatal lines. Cell lines established from adults did not vary significantly either in initial growth rate or in [3H]thymidine incorporation. These results clearly indicate that, if health status and biopsy conditions are controlled, the replicative lifespan of fibroblasts in culture does not correlate with donor age.
Resumo:
The database reported here is derived using the Combinatorial Extension (CE) algorithm which compares pairs of protein polypeptide chains and provides a list of structurally similar proteins along with their structure alignments. Using CE, structure–structure alignments can provide insights into biological function. When a protein of known function is shown to be structurally similar to a protein of unknown function, a relationship might be inferred; a relationship not necessarily detectable from sequence comparison alone. Establishing structure–structure relationships in this way is of great importance as we enter an era of structural genomics where there is a likelihood of an increasing number of structures with unknown functions being determined. Thus the CE database is an example of a useful tool in the annotation of protein structures of unknown function. Comparisons can be performed on the complete PDB or on a structurally representative subset of proteins. The source protein(s) can be from the PDB (updated monthly) or uploaded by the user. CE provides sequence alignments resulting from structural alignments and Cartesian coordinates for the aligned structures, which may be analyzed using the supplied Compare3D Java applet, or downloaded for further local analysis. Searches can be run from the CE web site, http://cl.sdsc.edu/ce.html, or the database and software downloaded from the site for local use.
Resumo:
Month of birth influences adult life expectancy at ages 50+. Why? In two countries of the Northern Hemisphere–Austria and Denmark–people born in autumn (October–December) live longer than those born in spring (April–June). Data for Australia show that, in the Southern Hemisphere, the pattern is shifted by half a year. The lifespan pattern of British immigrants to Australia is similar to that of Austrians and Danes and significantly different from that of Australians. These findings are based on population data with more than a million observations and little or no selectivity. The differences in lifespan are independent of the seasonal distribution of deaths and the social differences in the seasonal distribution of births. In the Northern Hemisphere, the excess mortality in the first year of life of infants born in spring does not support the explanation of selective infant survival. Instead, remaining life expectancy at age 50 appears to depend on factors that arise in utero or early in infancy and that increase susceptibility to diseases later in life. This result is consistent with the finding that, at the turn of the last century, infants born in autumn had higher birth weights than those born in other seasons. Furthermore, differences in adult lifespan by month of birth decrease over time and are significantly smaller in more recent cohorts, which benefited from substantial improvements in maternal and infant health.
Resumo:
The Drosophila mutant methuselah (mth) was identified from a screen for single gene mutations that extended average lifespan. Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Here we report the 2.3-Å resolution crystal structure of the Mth extracellular region, revealing a folding topology in which three primarily β-structure-containing domains meet to form a shallow interdomain groove containing a solvent-exposed tryptophan that may represent a ligand binding site. The Mth structure is analyzed in relation to predicted Mth homologs and potential ligand binding features.
Resumo:
Retinoid X receptors (RXRs) are involved in a number of signaling pathways as heterodimeric partners of numerous nuclear receptors. Hepatocytes express high levels of the RXRα isotype, as well as several of its putative heterodimeric partners. Germ-line disruption (knockout) of RXRα has been shown to be lethal in utero, thus precluding analysis of its function at later life stages. Hepatocyte-specific disruption of RXRα during liver organogenesis has recently revealed that the presence of hepatocytes is not mandatory for the mouse, at least under normal mouse facility conditions, even though a number of metabolic events are impaired [Wan, Y.-J., et al. (2000) Mol. Cell. Biol. 20, 4436–4444]. However, it is unknown whether RXRα plays a role in the control of hepatocyte proliferation and lifespan. Here, we report a detailed analysis of the liver of mice in which RXRα was selectively ablated in adult hepatocytes by using the tamoxifen-inducible chimeric Cre recombinase system. Our results show that the lifespan of adult hepatocytes lacking RXRα is shorter than that of their wild-type counterparts, whereas proliferative hepatocytes of regenerating liver exhibit an even shorter lifespan. These lifespan shortenings are accompanied by increased polyploidy and multinuclearity. We conclude that RXRα plays important cell-autonomous function(s) in the mechanism(s) involved in the lifespan of hepatocytes and liver regeneration.
Resumo:
Targeted gene disruption in the murine TOP3β gene-encoding DNA topoisomerase IIIβ was carried out. In contrast to the embryonic lethality of mutant mice lacking DNA topoisomerase IIIα, top3β−/− nulls are viable and grow to maturity with no apparent defects. Mice lacking DNA topoisomerase IIIβ have a shorter life expectancy than their wild-type littermates, however. The mean lifespan of the top3β−/− mice is about 15 months, whereas that of their wild-type littermates is longer than 2 years. Mortality of the top3β−/− nulls appears to correlate with lesions in multiple organs, including hypertrophy of the spleen and submandibular lymph nodes, glomerulonephritis, and perivascular infiltrates in various organs. Because the DNA topoisomerase III isozymes are likely to interact with helicases of the RecQ family, enzymes that include the determinants of human Bloom, Werner, and Rothmund–Thomson syndromes, the shortened lifespan of top3β−/− mice points to the possibility that the DNA topoisomerase III isozymes might be involved in the pathogenesis of progeroid syndromes caused by defective RecQ helicases.
Resumo:
Type IV pili are thin filaments that extend from the poles of a diverse group of bacteria, enabling them to move at speeds of a few tenths of a micrometer per second. They are required for twitching motility, e.g., in Pseudomonas aeruginosa and Neisseria gonorrhoeae, and for social gliding motility in Myxococcus xanthus. Here we report direct observation of extension and retraction of type IV pili in P. aeruginosa. Cells without flagellar filaments were labeled with an amino-specific Cy3 fluorescent dye and were visualized on a quartz slide by total internal reflection microscopy. When pili were attached to a cell and their distal ends were free, they extended or retracted at rates of about 0.5 μm s−1 (29°C). They also flexed by Brownian motion, exhibiting a persistence length of about 5 μm. Frequently, the distal tip of a filament adsorbed to the substratum and the filament was pulled taut. From the absence of lateral deflections of such filaments, we estimate tensions of at least 10 pN. Occasionally, cell bodies came free and were pulled forward by pilus retraction. Thus, type IV pili are linear actuators that extend, attach at their distal tips, exert substantial force, and retract.
Resumo:
A minor groove binder (MGB) derivative (N-3-carbamoyl-1,2-dihydro-3H-pyrrolo[3,2-e]indole-7-carboxylate tripeptide; CDPI3) was covalently linked to the 5' or 3' end of several oligodeoxyribonucleotides (ODNs) totally complementary or possessing a single mismatch to M13mp19 single-stranded DNA. Absorption thermal denaturation and slot-blot hybridization studies showed that conjugation of CDPI3 to these ODNs increased both the specificity and the strength with which they hybridized. Primer extension of the same phage DNA by a modified form of phage T7 DNA polymerase (Sequenase) was physically blocked when a complementary 16-mer with a conjugated 5'-CDPI3 moiety was hybridized to a downstream site. Approximately 50% of the replicating complexes were arrested when the blocking ODN was equimolar to the phage DNA. Inhibition was unaffected by 3'-capping of the ODN with a hexanol group or by elimination of a preannealing step. Blockage was abolished when a single mismatch was introduced into the ODN or when the MGB was either removed or replaced by a 5'-acridine group. A 16-mer with a 3'-CDPI3 moiety failed to arrest primer extension, as did an unmodified 32-mer. We attribute the exceptional stability of hybrids formed by ODNs conjugated to a CDPI3 to the tethered tripeptide binding in the minor groove of the hybrid. When that group is linked to the 5' end of a hybridized ODN, it probably blocks DNA synthesis by inhibiting strand displacement. These ODNs conjugated to CDPI3 offer attractive features as diagnostic probes and antigene agents.