6 resultados para lidocaine
em National Center for Biotechnology Information - NCBI
Resumo:
Head trauma leading to concussion and electroconvulsive shock (ECS) in humans causes amnesia for events that occurred shortly before the injury (retrograde amnesia). The present experiment investigated the amnesic effect of lidocaine and ECS in 25 rats trained on a working memory version of the Morris water task. Each day, the escape platform was moved to a new location; learning was evidenced by a decrease in the latency to find the platform from the first to the second trial. "Consolidation" of this newly encoded spatial engram was disrupted by bilateral inactivation of the dorsal hippocampus with 1 microliter of 4% lidocaine applied as soon as possible after the first trial. When trial 2 was given after recovery from the lidocaine (30 min after the injection), a normal decrease in latency indicated that the new engram was not disrupted. When trial 2 was given under the influence of lidocaine (5 min after injection), absence of latency decrease demonstrated both the success of the inactivation and the importance of hippocampus for the task. To examine the role of events immediately after learning, ECS (30 or 100 mA, 50 Hz, 1.2 sec) was applied 0 sec to 45 sec after a single escape to the new platform location. A 2-h delay between ECS and trial 2 allowed the effects of ECS to dissipate. ECS applied 45 sec or 30 sec after trial 1 caused no retrograde amnesia: escape latencies on trial 2 were the same as in control rats. However, ECS applied 0 sec or 15 sec after trial 1 induced clear retrograde amnesia: escape latencies on trial 2 were no shorter than on trial 1. It is concluded that the consolidation of a newly formed memory for spatial location can only be disrupted by ECS within 30 sec after learning.
Resumo:
The occurrence of cortical plasticity during adulthood has been demonstrated using many experimental paradigms. Whether this phenomenon is generated exclusively by changes in intrinsic cortical circuitry, or whether it involves concomitant cortical and subcortical reorganization, remains controversial. Here, we addressed this issue by simultaneously recording the extracellular activity of up to 135 neurons in the primary somatosensory cortex, ventral posterior medial nucleus of the thalamus, and trigeminal brainstem complex of adult rats, before and after a reversible sensory deactivation was produced by subcutaneous injections of lidocaine. Following the onset of the deactivation, immediate and simultaneous sensory reorganization was observed at all levels of the somatosensory system. No statistical difference was observed when the overall spatial extent of the cortical (9.1 ± 1.2 whiskers, mean ± SE) and the thalamic (6.1 ± 1.6 whiskers) reorganization was compared. Likewise, no significant difference was found in the percentage of cortical (71.1 ± 5.2%) and thalamic (66.4 ± 10.7%) neurons exhibiting unmasked sensory responses. Although unmasked cortical responses occurred at significantly higher latencies (19.6 ± 0.3 ms, mean ± SE) than thalamic responses (13.1 ± 0.6 ms), variations in neuronal latency induced by the sensory deafferentation occurred as often in the thalamus as in the cortex. These data clearly demonstrate that peripheral sensory deafferentation triggers a system-wide reorganization, and strongly suggest that the spatiotemporal attributes of cortical plasticity are paralleled by subcortical reorganization.
Resumo:
Changes in metabolism and local circulation occur in the spinal cord during peripheral noxious stimulation. Evidence is presented that this stimulation also causes signal intensity alterations in functional magnetic resonance images of the spinal cord during formalin-induced pain. These results indicate the potential of functional magnetic resonance imaging in assessing noninvasively the extent and intensity of spinal cord excitation in this well characterized pain model. Therefore, the aim of this study was to establish functional magnetic resonance imaging as a noninvasive method to characterize temporal changes in the spinal cord after a single injection of 50 μl of formalin subcutaneously into the hindpaw of the anesthetized rat. This challenge produced a biphasic licking activity in the freely moving conscious animal. Images of the spinal cord were acquired within 2 min, enabling monitoring of the site and the temporal evolution of the signal changes during the development of formalin-induced hyperalgesia without the need of any surgical procedure. The time course of changes in the spinal cord functional image in the isoflurane-anesthetized animal was similar to that obtained from behavioral experiments. Also, comparable physiological data, control experiments, and the inhibition of a response through application of the local anesthetic agent lidocaine indicate that the signal changes observed after formalin injection were specifically related to excitability changes in the relevant segments of the lumbar spinal cord. This approach could be useful to characterize different models of pain and hyperalgesia and, more importantly, to evaluate effects of analgesic drugs.
Resumo:
Local anesthetic antiarrhythmic drugs block Na+ channels and have important clinical uses. However, the molecular mechanism by which these drugs block the channel has not been established. The family of drugs is characterized by having an ionizable amino group and a hydrophobic tail. We hypothesized that the charged amino group of the drug may interact with charged residues in the channel’s selectivity filter. Mutation of the putative domain III selectivity filter residue of the adult rat skeletal muscle Na+ channel (μ1) K1237E increased resting lidocaine block, but no change was observed in block by neutral analogs of lidocaine. An intermediate effect on the lidocaine block resulted from K1237S and there was no effect from K1237R, implying an electrostatic effect of Lys. Mutation of the other selectivity residues, D400A (domain I), E755A (domain II), and A1529D (domain IV) allowed block by externally applied quaternary membrane-impermeant derivatives of lidocaine (QX314 and QX222) and accelerated recovery from block by internal QX314. Neo-saxitoxin and tetrodotoxin, which occlude the channel pore, reduced the amount of QX314 bound in D400A and A1529D, respectively. Block by outside QX314 in E755A was inhibited by mutation of residues in transmembrane segment S6 of domain IV that are thought to be part of an internal binding site. The results demonstrate that the Na+ channel selectivity filter is involved in interactions with the hydrophilic part of the drugs, and it normally limits extracellular access to and escape from their binding site just within the selectivity filter. Participation of the selectivity ring in antiarrhythmic drug binding and access locates this structure adjacent to the S6 segment.
Resumo:
Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.
Resumo:
The functional influence of the frontal cortex (FC) on the noradrenergic nucleus locus coeruleus (LC) was studied in the rat under ketamine anesthesia. The FC was inactivated by local infusion of lidocaine or ice-cold Ringer's solution while recording neuronal activity simultaneously in FC and LC. Lidocaine produced a transient increase in activity in FC, accompanied by a decrease in LC unit and multiunit activity. This was followed by a total inactivation of FC and a sustained increase in firing rate of LC neurons. Subsequent experiments revealed antidromic responses in the FC when stimulation was applied to the LC region. The antidromic responses in FC were found in a population of neurons (about 8%) restricted to the dorsomedial area, FR2. The results indicate that there is a strong inhibitory influence of FC on the tonic activity of LC neurons. The antidromic responses in FC to stimulation of the LC region suggest that this influence is locally mediated, perhaps through interneurons within the nucleus or neighboring the LC.