22 resultados para level of responsibility

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (ρ+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in ρ+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (ρ−). mtDNA recombination junctions are not observed in ρ+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Δmgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in ρ+ mtDNA of Δmgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by ≥ 10-fold in wild-type ρ+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of ρ+ mtDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have applied functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) image-contrast to map odor-elicited olfactory responses at the laminar level in the rat olfactory bulb (OB) elicited by iso-amyl acetate (10−2 dilution of saturated vapor) with spatial and temporal resolutions of 220×220×1,000 μm and 36 s. The laminar structure of the OB was clearly depicted by high-resolution in vivo anatomical MRI with spatial resolution of 110×110×1,000 μm. In repeated BOLD fMRI measurements, highly significant (P < 0.001) foci were located in the outer layers of both OBs. The occurrence of focal OB activity within a domain at the level of individual glomeruli or groups of glomeruli was corroborated on an intra- and inter-animal basis under anesthetized conditions with this noninvasive method. The dynamic studies demonstrated that the odor-elicited BOLD activations were highly reproducible on a time scale of minutes, whereas over tens of minutes the activations sometimes varied slowly. We found large BOLD signal (ΔS/S = 10–30%) arising from the olfactory nerve layer, which is devoid of synapses and composed of unmyelinated fibers and glial cells. Our results support previous studies with other methods showing that odors elicit activity within glomerular layer domains in the mammalian OB, and extend the analysis to shorter time periods at the level of individual glomeruli or groups of glomeruli. With further improvement, BOLD fMRI should be ideal for systematic analysis of the functional significance of individual glomeruli in olfactory information encoding and of spatiotemporal processing within the olfactory system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle contraction is the result of myosin cross-bridges (XBs) cyclically interacting with the actin-containing thin filament. This interaction is modulated by the thin filament regulatory proteins, troponin and tropomyosin (Tm). With the use of an in vitro motility assay, the role of Tm in myosin’s ability to generate force and motion was assessed. At saturating myosin surface densities, Tm had no effect on thin filament velocity. However, below 50% myosin saturation, a significant reduction in actin–Tm filament velocity was observed, with complete inhibition of movement occurring at 12.5% of saturating surface densities. Under similar conditions, actin filaments alone demonstrated no reduction in velocity. The effect of Tm on force generation was assessed at the level of a single thin filament. In the absence of Tm, isometric force was a linear function of the density of myosin on the motility surface. At 50% myosin surface saturation, the presence of Tm resulted in a 2-fold enhancement of force relative to actin alone. However, no further potentiation of force was observed with Tm at saturating myosin surface densities. These results indicate that, in the presence of Tm, the strong binding of myosin cooperatively activates the thin filament. The inhibition of velocity at low myosin densities and the potentiation of force at higher myosin densities suggest that Tm can directly modulate the kinetics of a single myosin XB and the recruitment of a population of XBs, respectively. At saturating myosin conditions, Tm does not appear to affect the recruitment or the kinetics of myosin XBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyk2 belongs to the Janus kinase (JAK) family of receptor associated tyrosine kinases, characterized by a large N-terminal region, a kinase-like domain and a tyrosine kinase domain. It was previously shown that Tyk2 contributes to interferon-α (IFN-α) signaling not only catalytically, but also as an essential intracellular component of the receptor complex, being required for high affinity binding of IFN-α. For this function the tyrosine kinase domain was found to be dispensable. Here, it is shown that mutant cells lacking Tyk2 have significantly reduced IFN-α receptor 1 (IFNAR1) protein level, whereas the mRNA level is unaltered. Expression of the N-terminal region of Tyk2 in these cells reconstituted wild-type IFNAR1 level, but did not restore the binding activity of the receptor. Studies of mutant Tyk2 forms deleted at the N terminus indicated that the integrity of the N-terminal region is required to sustain IFNAR1. These studies also showed that the N-terminal region does not directly modulate the basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation and for rendering the enzyme activatable by IFN-α. Overall, these results indicate that distinct Tyk2 domains provide different functions to the receptor complex: the N-terminal region sustains IFNAR1 level, whereas the kinase-like domain provides a function toward high affinity ligand binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chromosomal DNA of the bacteria Streptomyces ambofaciens DSM40697 is an 8-Mb linear molecule that ends in terminal inverted repeats (TIRs) of 210 kb. The sequences of the TIRs are highly variable between the different linear replicons of Streptomyces (plasmids or chromosomes). Two spontaneous mutant strains harboring TIRs of 480 and 850 kb were isolated. The TIR polymorphism seen is a result of the deletion of one chromosomal end and its replacement by 480 or 850 kb of sequence identical to the end of the undeleted chromosomal arm. Analysis of the wild-type sequences involved in these rearrangements revealed that a recombination event took place between the two copies of a duplicated DNA sequence. Each copy was mapped to one chromosomal arm, outside of the TIR, and encoded a putative alternative sigma factor. The two ORFs, designated hasR and hasL, were found to be 99% similar at the nucleotide level. The sequence of the chimeric regions generated by the recombination showed that the chromosomal structure of the mutant strains resulted from homologous recombination events between the two copies. We suggest that this mechanism of chromosomal arm replacement contributes to the rapid evolutionary diversification of the sequences of the TIR in Streptomyces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Drosophila melanogaster Suppressor of forked [Su(f)] protein shares homology with the yeast RNA14 protein and the 77-kDa subunit of human cleavage stimulation factor, which are proteins involved in mRNA 3′ end formation. This suggests a role for Su(f) in mRNA 3′ end formation in Drosophila. The su(f) gene produces three transcripts; two of them are polyadenylated at the end of the transcription unit, and one is a truncated transcript, polyadenylated in intron 4. Using temperature-sensitive su(f) mutants, we show that accumulation of the truncated transcript requires wild-type Su(f) protein. This suggests that the Su(f) protein autoregulates negatively its accumulation by stimulating 3′ end formation of the truncated su(f) RNA. Cloning of su(f) from Drosophila virilis and analysis of its RNA profile suggest that su(f) autoregulation is conserved in this species. Sequence comparison between su(f) from both species allows us to point out three conserved regions in intron 4 downstream of the truncated RNA poly(A) site. These conserved regions include the GU-rich downstream sequence involved in poly(A) site definition. Using transgenes truncated within intron 4, we show that sequence up to the conserved GU-rich domain is sufficient for production of the truncated RNA and for regulation of this production by su(f). Our results indicate a role of su(f) in the regulation of poly(A) site utilization and an important role of the GU-rich sequence for this regulation to occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β1,4-Galactosyltransferase (β4GalT-I) participates in both glycoconjugate biosynthesis (ubiquitous activity) and lactose biosynthesis (mammary gland-specific activity). In somatic tissues, transcription of the mammalian β4GalT-I gene results in a 4.1-kb mRNA and a 3.9-kb mRNA as a consequence of initiation at two start sites separated by ≈200 bp. In the mammary gland, coincident with the increased β4GalT-I enzyme level (≈50-fold) required for lactose biosynthesis, there is a switch from the 4.1-kb start site to the preferential use of the 3.9-kb start site, which is governed by a stronger tissue-restricted promoter. The use of the 3.9-kb start site results in a β4GalT-I transcript in which the 5′- untranslated region (UTR) has been truncated from ≈175 nt to ≈28 nt. The 5′-UTR of the 4.1-kb transcript [UTR(4.1)] is predicted to contain extensive secondary structure, a feature previously shown to reduce translational efficiency of an mRNA. In contrast, the 5′-UTR of the 3.9-kb mRNA [UTR(3.9)] lacks extensive secondary structure; thus, this transcript is predicted to be more efficiently translated relative to the 4.1-kb mRNA. To test this prediction, constructs were assembled in which the respective 5′-UTRs were fused to the luciferase-coding sequence and enzyme levels were determined after translation in vitro and in vivo. The luciferase mRNA containing the truncated UTR(3.9) was translated more efficiently both in vitro (≈14-fold) and in vivo (3- to 5-fold) relative to the luciferase mRNA containing the UTR(4.1). Consequently, in addition to control at the transcriptional level, β4GalT-I enzyme levels are further augmented in the lactating mammary gland as a result of translational control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eotaxin is an eosinophil-selective chemokine that is constitutively expressed in a variety of organs such as the intestine. Previous studies have demonstrated that the recruitment of eosinophils during inflammation is partially dependent on eotaxin, but the function of constitutive eotaxin during homeostasis has not been examined. To elucidate the biological role of this molecule, we now examine tissue levels of eosinophils in healthy states in wild-type and eotaxin-deficient mice. The lamina propria of the jejunum of wild-type mice is demonstrated to express eotaxin mRNA, but not mRNA for the related monocyte chemoattractant proteins. Wild-type mice contained readily detectable eosinophils in the lamina propria of the jejunum. In contrast, mice genetically deficient in eotaxin had a large selective reduction in the number of eosinophils residing in the jejunum. The reduction of tissue eosinophils was not limited to the jejunum, because a loss of thymic eosinophils was also observed in eotaxin-deficient mice. These studies demonstrate that eotaxin is a fundamental regulator of the physiological trafficking of eosinophils during healthy states. Because a variety of chemokines are constitutively expressed, their involvement in the baseline trafficking of leukocytes into nonhematopoietic tissue should now be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Arabidopsis seedlings and cauliflower florets, Rpn6 (a proteasome non-ATPase regulatory subunit) was found in two distinct protein complexes of ∼800 and 500 kDa, respectively. The large complex likely represents the proteasome 19S regulator particle (RP) because it displays the expected subunit composition and all characteristics. The small complex, designated PR500, shares at least three subunits with the “lid” subcomplex of 19S RP and is loosely associated with an hsp70 protein. In Arabidopsis COP9 signalosome mutants, PR500 was specifically absent or reduced to an extent that correlates with the severity of the mutations. Furthermore, PR500 was also diminished in response to potential protein-misfolding stresses caused by the heat shock and canavanine treatment. Immunofluorescence studies suggest that PR500 has a distinct localization pattern and is enriched in specific nuclear foci. We propose that PR500 may be evolved in higher plants to cope with the frequently encountered environmental stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tranformed-rule up and down psychophysical methods have gained great popularity, mainly because they combine criterion-free responses with an adaptive procedure allowing rapid determination of an average stimulus threshold at various criterion levels of correct responses. The statistical theory underlying the methods now in routine use is based on sets of consecutive responses with assumed constant probabilities of occurrence. The response rules requiring consecutive responses prevent the possibility of using the most desirable response criterion, that of 75% correct responses. The earliest transformed-rule up and down method, whose rules included nonconsecutive responses, did not contain this limitation but failed to become generally accepted, lacking a published theoretical foundation. Such a foundation is provided in this article and is validated empirically with the help of experiments on human subjects and a computer simulation. In addition to allowing the criterion of 75% correct responses, the method is more efficient than the methods excluding nonconsecutive responses in their rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were performed on three abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) mutants, notabilis, flacca, and sitiens, to investigate the role of ABA and jasmonic acid (JA) in the generation of electrical signals and Pin2 (proteinase inhibitor II) gene expression. We selected these mutants because they contain different levels of endogenous ABA. ABA levels in the mutant sitiens were reduced to 8% of the wild type, in notabilis they were reduced to 47%, and in flacca they were reduced to 21%. In wild-type and notabilis tomato plants the induction of Pin2 gene expression could be elicited by heat treatment, current application, or mechanical wounding. In flacca and sitiens only heat stimulation induced Pin2 gene expression. JA levels in flacca and sitiens plants also accumulated strongly upon heat stimulation but not upon mechanical wounding or current application. Characteristic electrical signals evolved in the wild type and in the notabilis and flacca mutants consisting of a fast action potential and a slow variation potential. However, in sitiens only heat evoked electrical signals; mechanical wounding and current application did not change the membrane potential. In addition, exogenous application of ABA to wild-type tomato plants induced transient changes in membrane potentials, indicating the involvement of ABA in the generation of electrical signals. Our data strongly suggest the presence of a minimum threshold value of ABA within the plant that is essential for the early events in electrical signaling and mediation of Pin2 gene expression upon wounding. In contrast, heat-induced Pin2 gene expression and membrane potential changes were not dependent on the ABA level but, rather, on the accumulation of JA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ribonucleoprotein telomerase synthesizes telomeric DNA by copying an intrinsic RNA template. In most cancer cells, telomerase is highly activated. Here we report a telomerase-based antitumor strategy: expression of mutant-template telomerase RNAs in human cancer cells. We expressed mutant-template human telomerase RNAs in prostate (LNCaP) and breast (MCF-7) cancer cell lines. Even a low threshold level of expression of telomerase RNA gene constructs containing various mutant templates, but not the control wild-type template, decreased cellular viability and increased apoptosis. This occurred despite the retention of normal levels of the endogenous wild-type telomerase RNA and endogenous wild-type telomerase activity and unaltered stable telomere lengths. In vivo tumor xenografts of a breast cancer cell line expressing a mutant-template telomerase RNA also had decreased growth rates. Therefore, mutant-template telomerase RNAs exert a strongly dominant-negative effect on cell proliferation and tumor growth. These results support the potential use of mutant-template telomerase RNA expression as an antineoplastic strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deleterious effect of superoxide radicals on cell growth and survival is predominately caused by rapid oxidation of labile [Fe-S] clusters in proteins. Oxidation of these clusters releases Fe(II) ions, which participate in Fenton chemistry that damages DNA. Here it is shown that elevated levels of the YggX protein increase the resistance of Salmonella enterica to superoxide stress, reverse enzymatic defects attributed to oxidized [Fe-S] clusters, and decrease the spontaneous mutation frequency. The data are consistent with a model in which YggX protects protein [Fe-S] clusters from oxidation.