14 resultados para lengthening

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human fibroblasts whose lifespan in culture has been extended by expression of a viral oncogene eventually undergo a growth crisis marked by failure to proliferate. It has been proposed that telomere shortening in these cells is the property that limits their proliferation. Here we report that ectopic expression of the wild-type reverse transcriptase protein (hTERT) of human telomerase averts crisis, at the same time reducing the frequency of dicentric and abnormal chromosomes. Surprisingly, as the resulting immortalized cells containing active telomerase continue to proliferate, their telomeres continue to shorten to mean lengths below those in control cells that enter crisis. These results provide evidence for a protective function of human telomerase that allows cell proliferation without requiring net lengthening of telomeres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The function of the immune system is highly dependent on cellular differentiation and clonal expansion of antigen-specific lymphocytes. However, little is known about mechanisms that may have evolved to protect replicative potential in actively dividing lymphocytes during immune differentiation and response. Here we report an analysis of telomere length and telomerase expression, factors implicated in the regulation of cellular replicative lifespan, in human B cell subsets. In contrast to previous observations, in which telomere shortening and concomitant loss of replicative potential occur in the process of somatic cell differentiation and cell division, it was found that germinal center (GC) B cells, a compartment characterized by extensive clonal expansion and selection, had significantly longer telomeric restriction fragments than those of precursor naive B cells. Furthermore, it was found that telomerase, a telomere-synthesizing enzyme, is expressed at high levels in GC B cells (at least 128-fold higher than those of naive and memory B cells), correlating with the long telomeres in this subset of B cells. Finally, both naive and memory B cells were capable of up-regulating telomerase activity in vitro in response to activation signals through the B cell antigen receptor in the presence of CD40 engagement and/or interleukin 4. These observations suggest that a novel process of telomere lengthening, possibly mediated by telomerase, functions in actively dividing GC B lymphocytes and may play a critical role in humoral immune response by maintaining the replicative potential of GC and descendant memory B cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Telomeric Repeat Amplification Protocol (TRAP) and its modified versions (including ours, TP-TRAP) change the size and/or the ratio of the telomerase products in the amplification stage of the assay. Based on our recently published method we developed a new TRAP. This method ensures that the number of telomeric repeats present in the original telomerase products does not change on PCR amplification. The usefulness of the method was proved with amplification of chemically synthesized telomerase products and a newly designed telomerase substrate oligonucleotide. This is the first report in which the PCR products directly reflect the size distribution of telomerase products generated by the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The “type I” pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repeat tracts. The “type II” pathway generates telomeres with extremely long heterogeneous terminal repeat tracts, reminiscent of the long telomeres observed in telomerase-deficient human tumors and tumor-derived cell lines. Here, we report that telomerase-negative (est2) yeast cells lacking SGS1 senesced more rapidly, experienced a higher rate of telomere erosion, and were delayed in the generation of survivors. The est2 sgs1 survivors that were generated grew poorly, arrested in G2/M and possessed exclusively type I telomeres, implying that SGS1 is critical for the type II pathway. The mouse WS gene suppressed the slow growth and G2/M arrest phenotype of est2 sgs1 survivors, arguing that the telomeric function of SGS1 is conserved. Reintroduction of SGS1 into est2 sgs1 survivors restored growth rate and extended terminal tracts by ≈300 bp. Both phenotypes were absolutely dependent on Sgs1 helicase activity. Introduction of an sgs1 carboxyl-terminal truncation allele with helicase activity restored growth rate without extending telomeres in most cases, demonstrating that type II telomeres are not necessary for normal growth in the absence of telomerase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whether phytophagous insects can speciate in sympatry when they shift and adapt to new host plants is a controversial question. One essential requirement for sympatric speciation is that disruptive selection outweighs gene flow between insect populations using different host plants. Empirical support for host-related selection (i.e., fitness trade-offs) is scant, however. Here, we test for host-dependent selection acting on apple (Malus pumila)- and hawthorn (Crataegus spp.)-infesting races of Rhagoletis pomonella (Diptera: Tephritidae). In particular, we examine whether the earlier fruiting phenology of apple trees favors pupae in deeper states of diapause (or with slower metabolisms/development rates) in the apple fly race. By experimentally lengthening the time period preceding winter, we exposed hawthorn race pupae to environmental conditions typically faced by apple flies. This exposure induced a significant genetic response at six allozyme loci in surviving hawthorn fly adults toward allele frequencies found in the apple race. The sensitivity of hawthorn fly pupae to extended periods of warm weather therefore selects against hawthorn flies that infest apples and helps to maintain the genetic integrity of the apple race by counteracting gene flow from sympatric hawthorn populations. Our findings confirm that postzygotic reproductive isolation can evolve as a pleiotropic consequence of host-associated adaptation, a central tenet of nonallopatric speciation. They also suggest that one reason for the paucity of reported fitness trade-offs is a failure to consider adequately costs associated with coordinating an insect’s life cycle with the phenology of its host plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brush border myosin-I (BBM-I) is a single-headed unconventional myosin found in the microvilli of intestinal epithelial cells. We used stopped-flow kinetic analysis to measure the rate and equilibrium constants for several steps in the BBM-I ATPase cycle. We determined the rates for ATP binding to BBM-I and brush border actomyosin-I (actoBBM-I), the rate of actoBBM-I dissociation by ATP, and the rates for the steps in ADP dissociation from actoBBM-I. The rate and equilibrium constants for several of the steps in the actoBBM-I ATPase are significantly different from those of other members of the myosin superfamily. Most notably, dissociation of the actoBBM-I complex by ATP and release of ADP from actoBBM-I are both very slow. The slow rates of these steps may play a role in lengthening the time spent in force-generating states and in limiting the maximal rate of BBM-I motility. In addition, release of ADP from the actoBBM-I complex occurs in at least two steps. This study provides evidence for a member of the myosin superfamily with markedly divergent kinetic behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the ciliate Euplotes to study the role of DNA polymerase in telomeric C strand synthesis. Euplotes provides a unique opportunity to study C strand synthesis without the complication of simultaneous DNA replication because millions of new telomeres are made at a stage in the life cycle when no general DNA replication takes place. Previously we showed that the C-strands of newly synthesized telomeres have a precisely controlled length while the G-strands are more heterogeneous. This finding suggested that, although synthesis of the G-strand (by telomerase) is the first step in telomere addition, a major regulatory step occurs during subsequent C strand synthesis. We have now examined whether G- and C strand synthesis might be regulated coordinately rather than by two independent mechanisms. We accomplished this by determining what happens to G- and C strand length if C strand synthesis is partially inhibited by aphidicolin. Aphidicolin treatment caused a general lengthening of the G-strands and a large increase in C strand heterogeneity. This concomitant change in both the G- and C strand length indicates that synthesis of the two strands is coordinated. Since aphidicolin is a very specific inhibitor of DNA polα and polδ, our results suggest that this coordinate length regulation is mediated by DNA polymerase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many proteins contain reiterated glutamine residues, but polyglutamine of excessive length may result in human disease by conferring new properties on the protein containing it. One established property of a glutamine residue, depending on the nature of the flanking residues, is its ability to act as an amine acceptor in a transglutaminase-catalyzed reaction and to make a glutamyl–lysine cross-link with a neighboring polypeptide. To learn whether glutamine repeats can act as amine acceptors, we have made peptides with variable lengths of polyglutamine flanked by the adjacent amino acid residues in the proteins associated with spinocerebellar ataxia type 1 (SCA1), Machado–Joseph disease (SCA3), or dentato-rubral pallido-luysian atrophy (DRPLA) or those residues adjacent to the preferred cross-linking site of involucrin, or solely by arginine residues. The polyglutamine was found to confer excellent substrate properties on any soluble peptide; under optimal conditions, virtually all the glutamine residues acted as amine acceptors in the reaction with glycine ethyl-ester, and lengthening the sequence of polyglutamine increased the reactivity of each glutamine residue. In the presence of transglutaminase, peptides containing polyglutamine formed insoluble aggregates with the proteins of brain extracts and these aggregates contained glutamyl–lysine cross-links. Repeated glutamine residues exposed on the surface of a neuronal protein should form cross-linked aggregates in the presence of any transglutaminase activated by the presence of Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under free running conditions, FREQUENCY (FRQ) protein, a central component of the Neurospora circadian clock, is progressively phosphorylated, becoming highly phosphorylated before its degradation late in the circadian day. To understand the biological function of FRQ phosphorylation, kinase inhibitors were used to block FRQ phosphorylation in vivo and the effects on FRQ and the clock observed. 6-dimethylaminopurine (a general kinase inhibitor) is able to block FRQ phosphorylation in vivo, reducing the rate of phosphorylation and the degradation of FRQ and lengthening the period of the clock in a dose-dependent manner. To confirm the role of FRQ phosphorylation in this clock effect, phosphorylation sites in FRQ were identified by systematic mutagenesis of the FRQ ORF. The mutation of one phosphorylation site at Ser-513 leads to a dramatic reduction of the rate of FRQ degradation and a very long period (>30 hr) of the clock. Taken together, these data strongly suggest that FRQ phosphorylation triggers its degradation, and the degradation rate of FRQ is a major determining factor for the period length of the Neurospora circadian clock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous studies have implicated the pRB family of nuclear proteins in the control of cell cycle progression. Although over-expression experiments have revealed that each of these proteins, pRB, p107, and p130, can induce a G1 cell cycle arrest, mouse knockouts demonstrated distinct developmental requirements for these proteins, as well as partial functional redundancy between family members. To study the mechanism by which the closely related pRB family proteins contribute to cell cycle progression, we generated 3T3 fibroblasts derived from embryos that lack one or more of these proteins (pRB−/−, p107−/−, p130−/−, pRB−/−/p107−/−, pRB−/−/p130−/−, and p107−/−/p130−/−). By comparing the growth and cell cycle characteristics of these cells, we have observed clear differences in the manner in which they transit through the G1 and S phases as well as exit from the cell cycle. Deletion of Rb, or more than one of the family members, results in a shortening of G1 and a lengthening of S phase, as well as a reduction in growth factor requirements. In addition, the individual cell lines showed differential regulation of a subset of E2F-dependent gene promoters, as well as differences in cell cycle-dependent kinase activity. Taken together, these observations suggest that the closely related pRB family proteins affect cell cycle progression through distinct biochemical mechanisms and that their coordinated action may contribute to their diverse functions in various physiological settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological specialization for a specific role has, until now, been assumed to be restricted to social invertebrates. Herein we show that complete physical dimorphism has evolved between reproductives and helpers in the eusocial naked mole-rat. Dimorphism is a consequence of the lumbar vertebrae lengthening after the onset of reproduction in females. This is the only known example of morphological castes in a vertebrate and is distinct from continuous size variation between breeders and helpers in other species of cooperatively breeding vertebrates. The evolution of castes in a mammal and insects represents a striking example of convergent evolution for enhanced fecundity in societies characterized by high reproductive skew. Similarities in the selective environment between naked mole-rats and eusocial insect species highlight the selective conditions under which queen/worker castes are predicted to evolve in animal societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Rad51 protein is important for genetic recombination and repair of DNA double-strand breaks in vivo and can promote strand exchange between linear double-stranded DNA and circular single-stranded DNA in vitro. However, unlike Escherichia coli RecA, Rad51 requires an overhanging complementary 3′ or 5′ end to initiate strand exchange; given that fact, we previously surmised that the fully exchanged molecules resulted from branch migration in either direction depending on which type of end initiated the joint molecule. Our present experiments confirm that branch migration proceeds in either direction, the polarity depending on whether a 3′ or 5′ end initiates the joint molecules. Furthermore, heteroduplex DNA is formed rapidly, first at the overhanging end of the linear double-stranded DNA’s complementary strand and then more slowly by progressive lengthening of the heteroduplex region until strand exchange is complete. Although joint molecule formation occurs equally efficiently when initiated with a 3′ or 5′ overhanging end, branch migration proceeds more rapidly when it is initiated by an overhanging 3′ end, i.e., in the 5′ to 3′ direction with respect to the single-stranded DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under certain conditions, the prion protein (PrP) undergoes a conformational change from the normal cellular isoform, PrPC, to PrPSc, an infectious isoform capable of causing neurodegenerative diseases in many mammals. Conversion can be triggered by low pH, and in vivo this appears to take place in an endocytic pathway and/or caveolae-like domains. It has thus far been impossible to characterize the conformational change at high resolution by experimental methods. Therefore, to investigate the effect of acidic pH on PrP conformation, we have performed 10-ns molecular dynamics simulations of PrPC in water at neutral and low pH. The core of the protein is well maintained at neutral pH. At low pH, however, the protein is more dynamic, and the sheet-like structure increases both by lengthening of the native β-sheet and by addition of a portion of the N terminus to widen the sheet by another two strands. The side chain of Met-129, a polymorphic codon in humans associated with variant Creutzfeldt–Jakob disease, pulls the N terminus into the sheet. Neutralization of Asp-178 at low pH removes interactions that inhibit conversion, which is consistent with the Asp-178–Asn mutation causing human prion diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast skeletal muscles of mdx (X chromosome-linked muscular dystrophy) mice were injected after birth with a recombinant adenovirus containing a minidys- trophin gene, a 6.3-kbp cDNA coding for the N- and C-terminal ends of dystrophin. Adult muscles were challenged by forced lengthening during tetanic contractions. Stretch-induced mechanical and histological damages were much reduced in injected muscles, in direct proportion of the Miniber of fibers expressing minidystrophin. Damaged fibers were preferentially found among minidystrophin-negative regions. Minidystrostrophin confers an important functional and structural protection of limb muscles against high mechanical stress, even after a partial somatic gene transfer.