6 resultados para learning effect

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The specificity of the improvement in perceptual learning is often used to localize the neuronal changes underlying this type of adult plasticity. We investigated a visual texture discrimination task previously reported to be accomplished preattentively and for which learning-related changes were inferred to occur at a very early level of the visual processing stream. The stimulus was a matrix of lines from which a target popped out, due to an orientation difference between the three target lines and the background lines. The task was to report the global orientation of the target and was performed monocularly. The subjects' performance improved dramatically with training over the course of 2-3 weeks, after which we tested the specificity of the improvement for the eye trained. In all subjects tested, there was complete interocular transfer of the learning effect. The neuronal correlate of this learning are therefore most likely localized in a visual area where input from the two eyes has come together.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Classical eyeblink conditioning is a well-characterized model paradigm that engages the septohippocampal cholinergic system. This form of associative learning is impaired in normal aging and severely disrupted in Alzheimer's disease (AD). Some nicotinic cholinergic receptor subtypes are lost in AD, making the use of nicotinic allosterically potentiating ligands a promising therapeutic strategy. The allosterically potentiating ligand galantamine (Gal) modulates nicotinic cholinergic receptors to increase acetylcholine release as well as acting as an acetylcholinesterase (AChE) inhibitor. Gal was tested in two preclinical experiments. In Experiment 1 with 16 young and 16 older rabbits, Gal (3.0 mg/kg) was administered for 15 days during conditioning, and the drug significantly improved learning, reduced AChE levels, and increased nicotinic receptor binding. In Experiment 2, 53 retired breeder rabbits were tested over a 15-wk period in four conditions. Groups of rabbits received 0.0 (vehicle), 1.0, or 3.0 mg/kg Gal for the entire 15-wk period or 3.0 mg/kg Gal for 15 days and vehicle for the remainder of the experiment. Fifteen daily conditioning sessions and subsequent retention and relearning assessments were spaced at 1-month intervals. The dose of 3.0 mg/kg Gal ameliorated learning deficits significantly during acquisition and retention in the group receiving 3.0 mg/kg Gal continuously. Nicotinic receptor binding was significantly increased in rabbits treated for 15 days with 3.0 mg/kg Gal, and all Gal-treated rabbits had lower levels of brain AChE. The efficacy of Gal in a learning paradigm severely impaired in AD is consistent with outcomes in clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleus accumbens, a site within the ventral striatum, is best known for its prominent role in mediating the reinforcing effects of drugs of abuse such as cocaine, alcohol, and nicotine. Indeed, it is generally believed that this structure subserves motivated behaviors, such as feeding, drinking, sexual behavior, and exploratory locomotion, which are elicited by natural rewards or incentive stimuli. A basic rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. It is likely, therefore, that the nucleus accumbens may serve as a substrate for reinforcement learning. However, there is surprisingly little information concerning the neural mechanisms by which appetitive responses are learned. In the present study, we report that treatment of the nucleus accumbens core with the selective competitive N-methyl-d-aspartate (NMDA) antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol/0.5 μl bilaterally) impairs response-reinforcement learning in the acquisition of a simple lever-press task to obtain food. Once the rats learned the task, AP-5 had no effect, demonstrating the requirement of NMDA receptor-dependent plasticity in the early stages of learning. Infusion of AP-5 into the accumbens shell produced a much smaller impairment of learning. Additional experiments showed that AP-5 core-treated rats had normal feeding and locomotor responses and were capable of acquiring stimulus-reward associations. We hypothesize that stimulation of NMDA receptors within the accumbens core is a key process through which motor responses become established in response to reinforcing stimuli. Further, this mechanism, may also play a critical role in the motivational and addictive properties of drugs of abuse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early experiences such as prenatal stress significantly influence the development of the brain and the organization of behavior. In particular, prenatal stress impairs memory processes but the mechanism for this effect is not known. Hippocampal granule neurons are generated throughout life and are involved in hippocampal-dependent learning. Here, we report that prenatal stress in rats induced lifespan reduction of neurogenesis in the dentate gyrus and produced impairment in hippocampal-related spatial tasks. Prenatal stress blocked the increase of learning-induced neurogenesis. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for psychopathological vulnerabilities in aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we developed a rat model of persistent mitochondrial dysfunction based upon the chronic partial inhibition of the mitochondrial enzyme cytochrome oxidase (EC 1.9.3.1). Continuous systemic infusion of sodium azide at approximately 1 mg/kg per hr inhibited cytochrome oxidase activity and produced a spatial learning deficit. In other laboratories, glucocorticoids have been reported to exacerbate neuronal damage from various acute metabolic insults. Therefore, we tested the hypothesis that corticosterone, the primary glucocorticoid in the rat, would potentiate the sodium azide-induced learning deficit. To this end, we first identified nonimpairing doses of sodium azide (approximately 0.75 mg/kg per hr) and corticosterone (100-mg pellet, 3-week sustained-release). We now report that chronic co-administration of these individually nonimpairing treatments produced a severe learning deficit. Moreover, the low dose of corticosterone, which did not elevate serum corticosterone, acted synergistically with sodium azide to inhibit cytochrome oxidase activity. The latter result represents a previously unidentified effect of glucocorticoids that provides a candidate mechanism for glucocorticoid potentiation of neurotoxicity induced by metabolic insult. These results may have the clinical implication of expanding the definition of hypercortisolism in patient populations with compromised oxidative metabolism. Furthermore, they suggest that glucocorticoid treatment may contribute to pathology in disease or trauma conditions that involve metabolic insult.