5 resultados para learning disabilities and efficacy

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional approach to cytotoxic T-lymphocyte (CTL) induction uses maximal antigen concentration with the intent of eliciting more CTL. However, the efficacy of this approach has not been systematically explored with regard to the quality of the CTLs elicited or their in vivo functionality. Here, we show that a diametrically opposite approach elicits CTLs that are much more effective at clearing virus. CTLs specific for a defined peptide epitope were selectively expanded with various concentrations of peptide antigen. CTLs generated with exceedingly low-dose peptide lysed targets sensitized with > 100-fold less peptide than CTLs generated with high-dose peptide. Differences in expression of T-cell antigen receptors or a number of other accessory molecules did not account for the functional differences. Further, high-avidity CTLs adoptively transferred into severe combined immunodeficient mice were 100- to 1000-fold more effective at viral clearance than the low-avidity CTLs, despite the fact that all CTL lines lysed virus-infected targets in vitro. Thus, the quality of CTLs is as important as the quantity of CTLs for adoptive immunotherapy, and the ability to kill virally infected targets in vitro is not predictive of in vivo efficacy, whereas the determinant density requirement described here is predictive. Application of these principles may be critical in developing effective adoptive cellular immunotherapy for viral infections and cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we developed a rat model of persistent mitochondrial dysfunction based upon the chronic partial inhibition of the mitochondrial enzyme cytochrome oxidase (EC 1.9.3.1). Continuous systemic infusion of sodium azide at approximately 1 mg/kg per hr inhibited cytochrome oxidase activity and produced a spatial learning deficit. In other laboratories, glucocorticoids have been reported to exacerbate neuronal damage from various acute metabolic insults. Therefore, we tested the hypothesis that corticosterone, the primary glucocorticoid in the rat, would potentiate the sodium azide-induced learning deficit. To this end, we first identified nonimpairing doses of sodium azide (approximately 0.75 mg/kg per hr) and corticosterone (100-mg pellet, 3-week sustained-release). We now report that chronic co-administration of these individually nonimpairing treatments produced a severe learning deficit. Moreover, the low dose of corticosterone, which did not elevate serum corticosterone, acted synergistically with sodium azide to inhibit cytochrome oxidase activity. The latter result represents a previously unidentified effect of glucocorticoids that provides a candidate mechanism for glucocorticoid potentiation of neurotoxicity induced by metabolic insult. These results may have the clinical implication of expanding the definition of hypercortisolism in patient populations with compromised oxidative metabolism. Furthermore, they suggest that glucocorticoid treatment may contribute to pathology in disease or trauma conditions that involve metabolic insult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mouse model for Down syndrome, Ts1Cje, has been developed. This model has made possible a step in the genetic dissection of the learning, behavioral, and neurological abnormalities associated with segmental trisomy for the region of mouse chromosome 16 homologous with the so-called “Down syndrome region” of human chromosome segment 21q22. Tests of learning in the Morris water maze and assessment of spontaneous locomotor activity reveal distinct learning and behavioral abnormalities, some of which are indicative of hippocampal dysfunction. The triplicated region in Ts1Cje, from Sod1 to Mx1, is smaller than that in Ts65Dn, another segmental trisomy 16 mouse, and the learning deficits in Ts1Cje are less severe than those in Ts65Dn. In addition, degeneration of basal forebrain cholinergic neurons, which was observed in Ts65Dn, was absent in Ts1Cje.