19 resultados para l-Sequences
em National Center for Biotechnology Information - NCBI
Resumo:
The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50°C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83–92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.
Resumo:
A satellite DNA sequence, As120a, specific to the A-genome chromosomes in the hexaploid oat, Avena sativa L., was isolated by subcloning a fragment with internal tandem repeats from a plasmid, pAs120, that had been obtained from an Avena strigosa (As genome) genomic library. Southern and in situ hybridization showed that sequences with homology to sequences within pAs120 were dispersed throughout the genome of diploid (A and C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) Avena species. In contrast, sequences homologous to As120a were found in two A-genome species (A. strigosa and Avena longiglumis) and in the hexaploid A. sativa whereas this sequence was little amplified in the tetraploid Avena murphyi and was absent in the remaining A- and C-genome diploid species. In situ hybridization of pAs120a to hexaploid oat species revealed the distribution of elements of the As120a repeated family over both arms of 14 of 42 chromosomes of this species. By using double in situ hybridization with pAs120a and a C genome-specific probe, three sets of 14 chromosomes were revealed corresponding to the A, C, and D genomes of the hexaploid species. Simultaneous in situ hybridizations with pAs120a and ribosomal probes were used to assign the SAT chromosomes of hexaploid species to their correct genomes. This work reports a sequence able to distinguish between the closely related A and D genomes of hexaploid oats. This sequence offers new opportunities to analyze the relationships of Avena species and to explore the possible evolution of various polyploid oat species.
Resumo:
Rotavirus contains two outer capsid viral proteins, the spike protein VP4 and major capsid component VP7, both of which are implicated in cell entry. We show that VP4 and VP7 contain tripeptide sequences previously shown to act as recognition sites for integrins in extracellular matrix proteins. VP4 contains the α2β1 integrin ligand site DGE. In VP7, the αxβ2 integrin ligand site GPR and the α4β1 integrin ligand site LDV are embedded in a novel disintegrin-like domain that also shows sequence similarity to fibronectin and the tie receptor tyrosine kinase. Microorganism sequence homology to these ligand motifs and to disintegrins has not been reported previously. In our experiments, peptides including these rotaviral tripeptides and mAbs directed to these integrins specifically blocked rotavirus infection of cells shown to express α2β1 and β2 integrins. Rotavirus VP4-mediated cell entry may involve the α2β1 integrin, whereas VP7 appears to interact with αxβ2 and α4β1 integrins.
Resumo:
Vaccinia uses actin-based motility for virion movement in host cells, but the specific protein components have yet to be defined. A cardinal feature of Listeria and Shigella actin-based motility is the involvement of vasodilator-stimulated phosphoprotein (VASP). This essential adapter recognizes and binds to actin-based motility 1 (ABM-1) consensus sequences [(D/E)FPPPPX(D/E), X = P or T] contained in Listeria ActA and in the p90 host-cell vinculin fragment generated by Shigella infection. VASP, in turn, provides the ABM-2 sequences [XPPPPP, X = G, P, L, S, A] for binding profilin, an actin-regulatory protein that stimulates actin filament assembly. Immunolocalization using rabbit anti-VASP antibody revealed that VASP concentrates behind motile virions in HeLa cells. Profilin was also present in these actin-rich rocket tails, and microinjection of 10 μM (intracellular) ABM-2 peptide (GPPPPP)3 blocked vaccinia actin-based motility. Vinculin did not colocalize with VASP on motile virions and remained in focal adhesion contacts; however, another ABM-1-containing host protein, zyxin, was concentrated at the rear of motile virions. We also examined time-dependent changes in the location of these cytoskeletal proteins during vaccinia infection. VASP and zyxin were redistributed dramatically several hours before the formation of actin rocket tails, concentrating in the viral factories of the perinuclear cytoplasm. Our findings underscore the universal involvement of ABM-1 and ABM-2 docking sites in actin-based motility of Listeria, Shigella, and now vaccinia.
Resumo:
T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in β1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the β1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human β1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the β1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the β1 integrin with the activating β1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the β1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of β1 integrin structure and function in human T cells.
Resumo:
The fungus Trichoderma harzianum is a potent mycoparasite of various plant pathogenic fungi. We have studied the molecular regulation of mycoparasitism in the host/mycoparasite system Botrytis cinerea/T. harzianum. Protein extracts, prepared from various stages of mycoparasitism, were used in electrophoretic mobility-shift assays (EMSAs) with two promoter fragments of the ech-42 (42-kDa endochitinase-encoding) gene of T. harzianum. This gene was chosen as a model because its expression is triggered during mycoparasitic interaction [Carsolio, C., Gutierrez, A., Jimenez, B., van Montagu, M. & Herrera-Estrella, A. (1994) Proc. Natl. Acad. Sci. USA 91, 10903–10907]. All cell-free extracts formed high-molecular weight protein–DNA complexes, but those obtained from mycelia activated for mycoparasitic attack formed a complex with greater mobility. Competition experiments, using oligonucleotides containing functional and nonfunctional consensus sites for binding of the carbon catabolite repressor Cre1, provided evidence that the complex from nonmycoparasitic mycelia involves the binding of Cre1 to both fragments of the ech-42 promoter. The presence of two and three consensus sites for binding of Cre1 in the two ech-42 promoter fragments used is consistent with these findings. In contrast, the formation of the protein–DNA complex from mycoparasitic mycelia is unaffected by the addition of the competing oligonucleotides and hence does not involve Cre1. Addition of equal amounts of protein of cell-free extracts from nonmycoparasitic mycelia converted the mycoparasitic DNA–protein complex into the nonmycoparasitic complex. The addition of the purified Cre1::glutathione S-transferase protein to mycoparasitic cell-free extracts produced the same effect. These findings suggest that ech-42 expression in T. harzianum is regulated by (i) binding of Cre1 to two single sites in the ech-42 promoter, (ii) binding of a “mycoparasitic” protein–protein complex to the ech-42 promoter in vicinity of the Cre1 binding sites, and (iii) functional inactivation of Cre1 upon mycoparasitic interaction to enable the formation of the mycoparasitic protein–DNA complex.
Resumo:
For many agronomically important plant genes, only their position on a genetic map is known. In the absence of an efficient transposon tagging system, such genes have to be isolated by map-based cloning. In bread wheat Triticum aestivum, the genome is hexaploid, has a size of 1.6 × 1010 bp, and contains more than 80% of repetitive sequences. So far, this genome complexity has not allowed chromosome walking and positional cloning. Here, we demonstrate that chromosome walking using bacterial artificial chromosome (BAC) clones is possible in the diploid wheat Triticum monococcum (Am genome). BAC end sequences were mostly repetitive and could not be used for the first walking step. New probes corresponding to rare low-copy sequences were efficiently identified by low-pass DNA sequencing of the BACs. Two walking steps resulted in a physical contig of 450 kb on chromosome 1AmS. Genetic mapping of the probes derived from the BAC contig demonstrated perfect colinearity between the physical map of T. monococcum and the genetic map of bread wheat on chromosome 1AS. The contig genetically spans the Lr10 leaf rust disease resistance locus in bread wheat, with 0.13 centimorgans corresponding to 300 kb between the closest flanking markers. Comparison of the genetic to physical distances has shown large variations within 350 kb of the contig. The physical contig can now be used for the isolation of the orthologous regions in bread wheat. Thus, subgenome chromosome walking in wheat can produce large physical contigs and saturate genomic regions to support positional cloning.
Resumo:
Let a(x) be a real function with a regular growth as x --> infinity. [The precise technical assumption is that a(x) belongs to a Hardy field.] We establish sufficient growth conditions on a(x) so that the sequence ([a(n)])(infinity)(n=1) is a good averaging sequence in L2 for the pointwise ergodic theorem. A sequence (an) of positive integers is a good averaging sequence in L2 for the pointwise ergodic theorem if in any dynamical system (Omega, Sigma, m, T) for f [symbol, see text] in L2(Omega) the averages [equation, see text] converge for almost every omicron in. Our result implies that sequences like ([ndelta]), where delta > 1 and not an integer, ([n log n]), and ([n2/log n]) are good averaging sequences for L2. In fact, all the sequences we examine will turn out to be good averaging for Lp, p > 1; and even for L log L. We will also establish necessary and sufficient growth conditions on a(x) so that the sequence ([a(n)]) is good averaging for mean convergence. Note that for some a(x) (e.g., a(x) = log2 x), ([a(n)]) may be good for mean convergence without being good for pointwise convergence.
Resumo:
In the evolution of eukaryotic genes, introns are believed to have played a major role in increasing the probability of favorable duplication events, chance recombinations, and exon shuffling resulting in functional hybrid proteins. As a rule, prokaryotic genes lack introns, and the examples of prokaryotic introns described do not seem to have contributed to gene evolution by exon shuffling. Still, certain protein families in modern bacteria evolve rapidly by recombination of genes, duplication of functional domains, and as shown for protein PAB of the anaerobic bacterial species Peptostreptococcus magnus, by the shuffling of an albumin-binding protein module from group C and G streptococci. Characterization of a protein PAB-related gene in a P. magnus strain with less albumin-binding activity revealed that the shuffled module was missing. Based on this fact and observations made when comparing gene sequences of this family of bacterial surface proteins interacting with albumin and/or immunoglobulin, a model is presented that can explain how this rapid intronless evolution takes place. A new kind of genetic element is introduced: the recer sequence promoting interdomain, in frame recombination and acting as a structure-less flexibility-promoting spacer in the corresponding protein. The data presented also suggest that antibiotics could represent the selective pressure behind the shuffling of protein modules in P. magnus, a member of the indigenous bacterial flora.
Resumo:
Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group.
Resumo:
DNA sequences of neutral nuclear autosomal loci, compared across diverse human populations, provide a previously untapped perspective into the mode and tempo of the emergence of modern humans and a critical comparison with published clonally inherited mitochondrial DNA and Y chromosome measurements of human diversity. We obtained over 55 kilobases of sequence from three autosomal loci encompassing Alu repeats for representatives of diverse human populations as well as orthologous sequences for other hominoid species at one of these loci. Nucleotide diversity was exceedingly low. Most individuals and populations were identical. Only a single nucleotide difference distinguished presumed ancestral alleles from descendants. These results differ from those expected if alleles from divergent archaic populations were maintained through multiregional continuity. The observed virtual lack of sequence polymorphism is the signature of a recent single origin for modern humans, with general replacement of archaic populations.
Resumo:
A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization.
Resumo:
A DNA-binding factor with high affinity and specificity for the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes has been characterized. The factor has the highest affinity for the [Leu5]-enkephalin-encoding sequence in the dynorphin B-encoding region of the prodynorphin gene, has relatively high affinity for other [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes, but has no apparent affinity for similar DNA sequences coding for [Met5]-enkephalin in the prodynorphin or proopiomelanocortin genes. The factor has been named [Leu5]enkephalin-encoding sequence DNA-binding factor (LEF). LEF has a nuclear localization and is composed of three subunits of about 60, 70, and 95 kDa, respectively. The highest levels were observed in rat testis, cerebellum, and spleen and were generally higher in late embryonal compared to newborn or adult animals. LEF activity was also recorded in human clonal tumor cell lines. LEF inhibited the transcription of reporter genes in artificial gene constructs where a [Leu5]enkephalin-encoding DNA fragment had been inserted between the transcription initiation site and the coding region of the reporter genes. These observations suggest that the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes also have regulatory functions realized through interaction with a specific DNA-binding factor.
Resumo:
Recent spectroscopic evidence implicating a binuclear iron site at the reaction center of fatty acyl desaturases suggested to us that certain fatty acyl hydroxylases may share significant amino acid sequence similarity with desaturases. To test this theory, we prepared a cDNA library from developing endosperm of the castor-oil plant (Ricinus communis L.) and obtained partial nucleotide sequences for 468 anonymous clones that were not expressed at high levels in leaves, a tissue deficient in 12-hydroxyoleic acid. This resulted in the identification of several cDNA clones encoding a polypeptide of 387 amino acids with a predicted molecular weight of 44,407 and with approximately 67% sequence homology to microsomal oleate desaturase from Arabidopsis. Expression of a full-length clone under control of the cauliflower mosaic virus 35S promoter in transgenic tobacco resulted in the accumulation of low levels of 12-hydroxyoleic acid in seeds, indicating that the clone encodes the castor oleate hydroxylase. These results suggest that fatty acyl desaturases and hydroxylases share similar reaction mechanisms and provide an example of enzyme evolution.
Resumo:
Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.