3 resultados para kinetic method
em National Center for Biotechnology Information - NCBI
Resumo:
Evaluation of nitronium ion-transfer equilibria, L1NO2+ + L2 = L2NO2+ + L1 (where L1 and L2 are ligands 1 and 2, respectively) by Fourier-transform ion cyclotron resonance mass spectrometry and application of the kinetic method, based on the metastable fragmentation of L1(NO2+)L2 nitronium ion-bound dimers led to a scale of relative gas-phase nitronium ion affinities. This scale, calibrated to a recent literature value for the NO2+ affinity of water, led for 18 ligands, including methanol, ammonia, representative ketones, nitriles, and nitroalkanes, to absolute NO2+ affinities, that fit a reasonably linear general correlation when plotted vs. the corresponding proton affinities (PAs). The slope of the plot depends to a certain extent on the specific nature of the ligands and, hence, the correlations between the NO2+ affinities, and the PAs of a given class of compounds display a better linearity than the general correlation and may afford a useful tool for predicting the NO2+ affinity of a molecule based on its PA. The NO2+ binding energies are considerably lower than the corresponding PAs and well below the binding energies of related polyatomic cations, such as NO+, a trend consistent with the available theoretical results on the structure and the stability of simple NO2+ complexes. The present study reports an example of extension of the kinetic method to dimers, such as L1(NO2+)L2, bound by polyatomic ions, which may considerably widen its scope. Finally, measurement of the NO2+ affinity of ammonia allowed evaluation of the otherwise inaccessible PA of the amino group of nitramide and, hence, direct experimental verification of previous theoretical estimates.
Resumo:
In the current standard procedure for preparation of mammalian rhodopsin mutants, transfected COS-1 cells expressing the mutant opsin genes are treated with 5 μM 11-cis-retinal before detergent solubilization for purification. We found that binding of 11-cis-retinal to opsin mutants with single amino acid changes at Trp-265 (W265F,Y,A) and a retinitis pigmentosa mutant (A164V) was far from complete and required much higher concentrations of 11-cis-retinal. By isolation of the expressed opsins in a stable form, kinetic studies of retinal binding to the opsins in vitro have been carried out by using defined phospholipid–detergent mixtures. The results show wide variation in the rates of 11-cis-retinal binding. Thus, the in vitro reconstitution procedure serves as a probe of the retinal-binding pocket in the opsins. Further, a method is described for purification and characterization of the rhodopsin mutants after retinal binding to the opsins in vitro.
Resumo:
Folding of lysozyme from hen egg white was investigated by using interrupted refolding experiments. This method makes use of a high energy barrier between the native state and transient folding intermediates, and, in contrast to conventional optical techniques, it enables one to specifically monitor the amount of native molecules during protein folding. The results show that under strongly native conditions lysozyme can refold on parallel pathways. The major part of the lysozyme molecules (86%) refold on a slow kinetic pathway with well-populated partially folded states. Additionally, 14% of the molecules fold faster. The rate constant of formation of native molecules on the fast pathway corresponds well to the rate constant expected for folding to occur by a two-state process without any detectable intermediates. The results suggest that formation of the native state for the major fraction of lysozyme molecules is retarded compared with the direct folding process. Partially structured intermediates that transiently populate seem to be kinetically trapped in a conformation that can only slowly reach the native structure.