6 resultados para jejunum
em National Center for Biotechnology Information - NCBI
Resumo:
The effects of PAR2-activating PAR2-activating peptides, SLIGRL (SL)-NH2, and trans-cinnamoyl-LIGRLO (tc)-NH2 were compared with the action of trypsin, thrombin, and the PAR1 selective-activating peptide: Ala-parafluoroPhe-Arg-cyclohexylAla-Citrulline-Tyr (Cit)-NH2 for stimulating intestinal ion transport. These agonists were added to the serosa of stripped rat jejunum segments mounted in Ussing chambers, and short circuit current (Isc) was used to monitor active ion transport. The relative potencies of these agonists also were evaluated in two bioassays specific for the activation of rat PAR2: a cloned rat PAR2 cell calcium-signaling assay (PAR2-KNRK cells) and an aorta ring relaxation (AR) assay. In the Isc assay, all agonists, except thrombin, induced an Isc increase. The SL-NH2-induced Isc changes were blocked by indomethacin but not by tetrodotoxin. The relative potencies of the agonists in the Isc assay (trypsin≫SL-NH2>tc-NH2>Cit-NH2) were strikingly different from their relative potencies in the cloned PAR2-KNRK cell calcium assay (trypsin≫>tc-NH2 ≅ SL-NH2≫>Cit-NH2) and in the AR assay (trypsin≫>tc-NH2 ≅ SL-NH2). Furthermore, all agonists were maximally active in the PAR2-KNRK cell and AR assays at concentrations that were one (PAR2 -activating peptides) or two (trypsin) orders of magnitude lower than those required to activate intestinal transport. Based on the distinct potency profile for these agonists and the considerable differences in the concentration ranges required to induce an Isc effect in the intestinal assay compared with the PAR2-KNRK and AR assays, we conclude that a proteinase-activated receptor, pharmacologically distinct from PAR2 and PAR1, is present in rat jejunum and regulates intestinal transport via a prostanoid-mediated mechanism.
Resumo:
Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enterocytes by activating PAR-2. PAR-2 mRNA was highly expressed in the mucosa of the small intestine and in an enterocyte cell line. Immunoreactive PAR-2 was detected at the apical membrane of enterocytes, where it could be cleaved by luminal trypsin. Physiological concentrations of pancreatic trypsin and a peptide corresponding to the tethered ligand of PAR-2, which is exposed by trypsin cleavage, stimulated generation of inositol 1,4,5-trisphosphate, arachidonic acid release, and secretion of prostaglandin E2 and F1α from enterocytes and a transfected cell line. Application of trypsin to the apical membrane of enterocytes and to the mucosal surface of everted sacs of jejunum also stimulated prostaglandin E2 secretion. Thus, luminal trypsin activates PAR-2 at the apical membrane of enterocytes to stimulate secretion of eicosanoids, which regulate multiple cell types in a paracrine and autocrine manner. We conclude that trypsin is a signaling molecule that specifically regulates enterocytes by triggering PAR-2.
Resumo:
Eotaxin is an eosinophil-selective chemokine that is constitutively expressed in a variety of organs such as the intestine. Previous studies have demonstrated that the recruitment of eosinophils during inflammation is partially dependent on eotaxin, but the function of constitutive eotaxin during homeostasis has not been examined. To elucidate the biological role of this molecule, we now examine tissue levels of eosinophils in healthy states in wild-type and eotaxin-deficient mice. The lamina propria of the jejunum of wild-type mice is demonstrated to express eotaxin mRNA, but not mRNA for the related monocyte chemoattractant proteins. Wild-type mice contained readily detectable eosinophils in the lamina propria of the jejunum. In contrast, mice genetically deficient in eotaxin had a large selective reduction in the number of eosinophils residing in the jejunum. The reduction of tissue eosinophils was not limited to the jejunum, because a loss of thymic eosinophils was also observed in eotaxin-deficient mice. These studies demonstrate that eotaxin is a fundamental regulator of the physiological trafficking of eosinophils during healthy states. Because a variety of chemokines are constitutively expressed, their involvement in the baseline trafficking of leukocytes into nonhematopoietic tissue should now be considered.
Resumo:
Injury, inflammation, or resection of the small intestine results in severe compromise of intestinal function. Nevertheless, therapeutic strategies for enhancing growth and repair of the intestinal mucosal epithelium are currently not available. We demonstrate that nude mice bearing subcutaneous proglucagon-producing tumors exhibit marked proliferation of the small intestinal epithelium. The factor responsible for inducing intestinal proliferation was identified as glucagon-like peptide 2 (GLP-2), a 33-aa peptide with no previously ascribed biological function. GLP-2 stimulated crypt cell proliferation and consistently induced a marked increase in bowel weight and villus growth of the jejunum and ileum that was evident within 4 days after initiation of GLP-2 administration. These observations define a novel biological role for GLP-2 as an intestinal-derived peptide stimulator of small bowel epithelial proliferation.
Resumo:
Cholecystokinin (CCK) secretion in rats and humans is inhibited by pancreatic proteases and bile acids in the intestine. It has been hypothesized that the inhibition of CCK release caused by pancreatic proteases is due to proteolytic inactivation of a CCK-releasing peptide present in intestinal secretion. To purify the putative luminal CCK-releasing factor (LCRF), intestinal secretions were collected by perfusing a modified Thiry-Vella fistula of jejunum in conscious rats. From these secretions, the peptide was concentrated by ultrafiltration followed by low-pressure reverse-phase chromatography and purified by reverse-phase high-pressure liquid chromatography. Purity was confirmed by high-performance capillary electrophoresis. Fractions were assayed for CCK-releasing activity by their ability to stimulate pancreatic protein secretion when infused into the proximal small intestine of conscious rats. Partially purified fractions strongly stimulated both pancreatic secretion and CCK release while CCK receptor blockade abolished the pancreatic response. Amino acid analysis and mass spectral analysis showed that the purified peptide is composed of 70-75 amino acid residues and has a mass of 8136 Da. Microsequence analysis of LCRF yielded an amino acid sequence for 41 residues as follows: STFWAYQPDGDNDPTDYQKYEHTSSPSQLLAPGDYPCVIEV. When infused intraduodenally, the purified peptide stimulated pancreatic protein and fluid secretion in a dose-related manner in conscious rats and significantly elevated plasma CCK levels. Immunoaffinity chromatography using antisera raised to synthetic LCRF-(1-6) abolished the CCK releasing activity of intestinal secretions. These studies demonstrate, to our knowledge, the first chemical characterization of a luminally secreted enteric peptide functioning as an intraluminal regulator of intestinal hormone release.
Resumo:
pS2 is a member of the trefoil peptide family, all of which are overexpressed at sites of gastrointestinal injury. We hypothesized that they are important in stimulating mucosal repair. To test this idea, we have produced a transgenic mice strain that expresses human pS2 (hpS2) specifically within the jejunum and examined the effect of this overexpression on proliferation and susceptibility to indomethacin-induced damage. A transgenic mouse was produced by microinjecting fertilized oocytes with a 1.7-kb construct consisting of rat intestinal fatty acid binding protein promoter (positions -1178 to +28) linked to full-length (490 bp) hpS2 cDNA. Screening for positive animals was by Southern blot analysis. Distribution of hpS2 expression was determined by using Northern and Western blot analyses and immunohistochemical staining. Proliferation of the intestinal mucosa was determined by assessing the crypt cell production rate. Differences in susceptibility to intestinal damage were analyzed in animals that had received indomethacin (85 mg/kg s.c.) 0-30 h previously. Expression of hpS2 was limited to the enterocytes of the villi within the jejunum. In the nondamaged intestine, villus height and crypt cell production rate were similar in transgenic and negative (control) litter mates. However, there was a marked difference in the amount of damage caused by indomethacin in control and transgenic animals in the jejunum (30% reduction in villus height in controls vs. 12% reduction in transgenic animals, P < 0.01) but the damage sustained in the non-hpS2-expressing ileal region was similar in control and transgenic animals. These studies support the hypothesis that trefoil peptides are important in stimulating gastrointestinal repair.