22 resultados para isozymes

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Δprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2) required inorganic phosphate for activity, whereas the others were phosphate independent. PRPP synthase isozymes 2 and 3 contained 76 and 87 amino acid extensions, respectively, at their N-terminal ends in comparison with other PRPP synthases. Isozyme 2 was synthesized in vitro and shown to be imported and processed by pea (Pisum sativum) chloroplasts. Amino acid sequence analysis indicated that isozyme 3 may be transported to mitochondria and that isozyme 4 may be located in the cytosol. The deduced amino acid sequences of isozymes 1 and 2 and isozymes 3 and 4 were 88% and 75% identical, respectively. In contrast, the amino acid identities of PRPP synthase isozyme 1 or 2 with 3 or 4 was modest (22%–25%), but the sequence motifs for binding of PRPP and divalent cation-nucleotide were identified in all four sequences. The results indicate that PRPP synthase isozymes 3 and 4 belong to a new class of PRPP synthases that may be specific to plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two glutathione S-transferase (GST) isozymes, A1/A1 and B1/B2, were purified from etiolated, O-1,3-dioxolan-2-yl-methyl-2,2,2,-trifluoro-4′-chloroacetophenone-oxime-treated sorghum (Sorghum bicolor L. Moench) shoots. GST A1/A1, a constitutively expressed homodimer, had a subunit molecular mass of 26 kD and an isoelectric point of 4.9. GST A1/A1 exhibited high activity with 1-chloro-2, 4,dinitrobenzene (CDNB) but low activity with the chloroacetanilide herbicide metolachlor. For GST A1/A1, the random, rapid-equilibrium bireactant kinetic model provided a good description of the kinetic data for the substrates CDNB and glutathione (GSH). GST B1/B2 was a heterodimer with subunit molecular masses of 26 kD (designated the B1 subunit) and 28 kD (designated the B2 subunit) and a native isoelectric point of 4.8. GST B1/B2 exhibited low activity with CDNB and high activity with metolachlor as the substrate. The kinetics of GST B1/B2 activity with GSH and metolachlor fit a model describing a multisite enzyme having two binding sites with different affinities for these substrates. Both GST A1/A1 and GST B1/B2 exhibited GSH-conjugating activity with ethacrynic acid and GSH peroxidase activity with cumene hydroperoxide, 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid and 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid. Both GST A1/A1 and GST B1/B2 are glycoproteins, as indicated by their binding of concanavalin A. Polyclonal antibodies raised against GST A1/A1 exhibited cross-reactivity with the B1 subunit of GST B1/B2. Comparisons of the N-terminal amino acid sequences of the GST A1, B1, and B2 subunits with other type I θ-GSTs indicated a high degree of homology with the maize GST I subunit and a sugarcane GST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acid sequencing by recombinant DNA technology, although dramatically useful, is subject to base reading errors, is indirect, and is insensitive to posttranslational processing. Mass spectrometry techniques can provide molecular weight data from even relatively large proteins for such cDNA sequences and can serve as a check of an enzyme's purity and sequence integrity. Multiply-charged ions from electrospray ionization can be dissociated to yield structural information by tandem mass spectrometry, providing a second method for gaining additional confidence in primary sequence confirmation. Here, accurate (+/- 1 Da) molecular weight and molecular ion dissociation information for human muscle and brain creatine kinases has been obtained by electrospray ionization coupled with Fourier-transform mass spectrometry to help distinguish which of several published amino acid sequences for both enzymes are correct. The results herein are consistent with one published sequence for each isozyme, and the heterogeneity indicated by isoelectric focusing due to 1-Da deamidation changes. This approach appears generally useful for detailed sequence verification of recombinant proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bryostatins are a unique family of emerging cancer chemotherapeutic candidates isolated from marine bryozoa. Although the biochemical basis for their therapeutic activity is not known, these macrolactones exhibit high affinities for protein kinase C (PKC) isozymes, compete for the phorbol ester binding site on PKC, and stimulate kinase activity in vitro and in vivo. Unlike the phorbol esters, they are not first-stage tumor promoters. The design, computer modeling, NMR solution structure, PKC binding, and functional assays of a unique class of synthetic bryostatin analogs are described. These analogs (7b, 7c, and 8) retain the putative recognition domain of the bryostatins but are simplified through deletions and modifications in the C4-C14 spacer domain. Computer modeling of an analog prototype (7a) indicates that it exists preferentially in two distinct conformational classes, one in close agreement with the crystal structure of bryostatin 1. The solution structure of synthetic analog 7c was determined by NMR spectroscopy and found to be very similar to the previously reported structures of bryostatins 1 and 10. Analogs 7b, 7c, and 8 bound strongly to PKC isozymes with Ki = 297, 3.4, and 8.3 nM, respectively. Control 7d, like the corresponding bryostatin derivative, exhibited weak PKC affinity, as did the derivative, 9, lacking the spacer domain. Like bryostatin, acetal 7c exhibited significant levels of in vitro growth inhibitory activity (1.8–170 ng/ml) against several human cancer cell lines, providing an important step toward the development of simplified, synthetically accessible analogs of the bryostatins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent epidemiological studies indicate beneficial effects of moderate ethanol consumption in ischemic heart disease. Most studies, however, focus on the effect of long-term consumption of ethanol. In this study, we determined whether brief exposure to ethanol immediately before ischemia also produces cardioprotection. In addition, because protein kinase C (PKC) has been shown to mediate protection of the heart from ischemia, we determined the role of specific PKC isozymes in ethanol-induced protection. We demonstrated that (i) brief exposure of isolated adult rat cardiac myocytes to 10–50 mM ethanol protected against damage induced by prolonged ischemia; (ii) an isozyme-selective ɛPKC inhibitor developed in our laboratory inhibited the cardioprotective effect of acute ethanol exposure; (iii) protection of isolated intact adult rat heart also occurred after incubation with 10 mM ethanol 20 min before global ischemia; and (iv) ethanol-induced cardioprotection depended on PKC activation because it was blocked by chelerythrine and GF109203X, two PKC inhibitors. Consumption of 1–2 alcoholic beverages in humans leads to blood alcohol levels of ≈10 mM. Therefore, our work demonstrates that exposure to physiologically attainable ethanol levels minutes before ischemia provides cardioprotection that is mediated by direct activation of ɛPKC in the cardiac myocytes. The potential clinical implications of our findings are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using β-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heme oxygenase (HO) catalyzes the conversion of heme to carbon monoxide, iron, and biliverdin, which is immediately reduced to bilirubin (BR). Two HO active isozymes exist: HO1, an inducible heat shock protein, and HO2, which is constitutive and highly concentrated in neurons. We demonstrate a neuroprotective role for BR formed from HO2. Neurotoxicity elicited by hydrogen peroxide in hippocampal and cortical neuronal cultures is prevented by the phorbol ester, phorbol 12-myristate 13-acetate (PMA) via stimulation of protein kinase C. We observe phosphorylation of HO2 through the protein kinase C pathway with enhancement of HO2 catalytic activity and accumulation of BR in neuronal cultures. The neuroprotective effects of PMA are prevented by the HO inhibitor tin protoporphyrin IX and in cultures from mice with deletion of HO2 gene. Moreover, BR, an antioxidant, is neuroprotective at nanomolar concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three single-headed monomeric myosin I isozymes of Acanthamoeba castellanii (AMIs)—AMIA, AMIB, and AMIC—are among the best-studied of all myosins. We have used AMIC to study structural correlates of myosin’s actin-activated ATPase. This activity is normally controlled by phosphorylation of Ser-329, but AMIC may be switched into constitutively active or inactive states by substituting this residue with Glu or Ala, respectively. To determine whether activation status is reflected in structural differences in the mode of attachment of myosin to actin, these mutant myosins were bound to actin filaments in the absence of nucleotide (rigor state) and visualized at 24-Å resolution by using cryoelectron microscopy and image reconstruction. No such difference was observed. Consequently, we suggest that regulation may be affected not by altering the static (time-averaged) structure of AMIC but by modulating its dynamic properties, i.e., molecular breathing. The tail domain of vertebrate intestinal brush-border myosin I has been observed to swing through 31° on binding of ADP. However, it was predicted on grounds of differing kinetics that any such effects with AMIC should be small [Jontes, J. D., Ostap, E. M., Pollard, T. D. & Milligan, R. A. (1998) J. Cell Biol. 141, 155–162]. We have confirmed this hypothesis by observing actin-associated AMIC in its ADP-bound state. Finally, we compared AMIC to brush-border myosin I and AMIB, which were previously studied under similar conditions. In each case, the shape and angle of attachment to F-actin of the catalytic domain is largely conserved, but the domain structure and disposition of the tail is distinctively different for each myosin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Targeted gene disruption in the murine TOP3β gene-encoding DNA topoisomerase IIIβ was carried out. In contrast to the embryonic lethality of mutant mice lacking DNA topoisomerase IIIα, top3β−/− nulls are viable and grow to maturity with no apparent defects. Mice lacking DNA topoisomerase IIIβ have a shorter life expectancy than their wild-type littermates, however. The mean lifespan of the top3β−/− mice is about 15 months, whereas that of their wild-type littermates is longer than 2 years. Mortality of the top3β−/− nulls appears to correlate with lesions in multiple organs, including hypertrophy of the spleen and submandibular lymph nodes, glomerulonephritis, and perivascular infiltrates in various organs. Because the DNA topoisomerase III isozymes are likely to interact with helicases of the RecQ family, enzymes that include the determinants of human Bloom, Werner, and Rothmund–Thomson syndromes, the shortened lifespan of top3β−/− mice points to the possibility that the DNA topoisomerase III isozymes might be involved in the pathogenesis of progeroid syndromes caused by defective RecQ helicases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cDNA fragments encoding the carboxyltransferase domain of the multidomain plastid acetyl-CoA carboxylase (ACCase) from herbicide-resistant maize and from herbicide-sensitive and herbicide-resistant Lolium rigidum were cloned and sequenced. A Leu residue was found in ACCases from herbicide-resistant plants at a position occupied by Ile in all ACCases from sensitive grasses studied so far. Leu is present at the equivalent position in herbicide-resistant ACCases from other eukaryotes. Chimeric ACCases containing a 1000-aa fragment of two ACCase isozymes found in a herbicide-resistant maize were expressed in a yeast ACC1 null mutant to test herbicide sensitivity of the enzyme in vivo and in vitro. One of the enzymes was resistant/tolerant, and one was sensitive to haloxyfop and sethoxydim, rendering the gene-replacement yeast strains resistant and sensitive to these compounds, respectively. The sensitive enzyme has an Ile residue, and the resistant one has a Leu residue at the putative herbicide-binding site. Additionally, a single Ile to Leu replacement at an equivalent position changes the wheat plastid ACCase from sensitive to resistant. The effect of the opposite substitution, Leu to Ile, makes Toxoplasma gondii apicoplast ACCase resistant to haloxyfop and clodinafop. In this case, inhibition of the carboxyltransferase activity of ACCase (second half-reaction) of a large fragment of the Toxoplasma enzyme expressed in Escherichia coli was tested. The critical amino acid residue is located close to a highly conserved motif of the carboxyltransferase domain, which is probably a part of the enzyme active site, providing the basis for the activity of fop and dim herbicides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was reported previously that enolase enzyme activity and ENO1 transcript levels are induced by anaerobic stress in maize (Zea mays). Here we show that not all isoforms of maize enolase are anaerobically induced. We cloned and sequenced a second enolase cDNA clone (pENO2) from maize. Sequence analysis showed that pENO2 shares 75.6% nucleotide and 89.5% deduced amino acid sequence identity with pENO1 and is encoded by a distinct gene. Expression of ENO2 is constitutive under aerobic conditions, whereas ENO1 levels are induced 10-fold in maize roots after 24 h of anaerobic treatment. Western-blot analysis and N-terminal sequencing of in vivo-labeled maize roots identified two major proteins selectively synthesized upon anaerobic stress as isozymes of enolase. We describe the expression of enolase in maize roots under anaerobic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphoglucomutase (PGM) catalyzes the interconversion of glucose (Glc)-1- and Glc-6-phosphate in the synthesis and consumption of sucrose. We isolated two maize (Zea mays L.) cDNAs that encode PGM with 98.5% identity in their deduced amino acid sequence. Southern-blot analysis with genomic DNA from lines with different Pgm1 and Pgm2 genotypes suggested that the cDNAs encode the two known cytosolic PGM isozymes, PGM1 and PGM2. The cytosolic PGMs of maize are distinct from a plastidic PGM of spinach (Spinacia oleracea). The deduced amino acid sequences of the cytosolic PGMs contain the conserved phosphate-transfer catalytic center and the metal-ion-binding site of known prokaryotic and eukaryotic PGMs. PGM mRNA was detectable by RNA-blot analysis in all tissues and organs examined except silk. A reduction in PGM mRNA accumulation was detected in roots deprived of O2 for 24 h, along with reduced synthesis of a PGM identified as a 67-kD phosphoprotein on two-dimensional gels. Therefore, PGM is not one of the so-called “anaerobic polypeptides.” Nevertheless, the specific activity of PGM was not significantly affected in roots deprived of O2 for 24 h. We propose that PGM is a stable protein and that existing levels are sufficient to maintain the flux of Glc-1-phosphate into glycolysis under O2 deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In previous work with soybean (Glycine max), it was reported that the initial product of 3Z-nonenal (NON) oxidation is 4-hydroperoxy-2E-nonenal (4-HPNE). 4-HPNE can be converted to 4-hydroxy-2E-nonenal by a hydroperoxide-dependent peroxygenase. In the present work we have attempted to purify the 4-HPNE-producing oxygenase from soybean seed. Chromatography on various supports had shown that O2 uptake with NON substrate consistently coincided with lipoxygenase (LOX)-1 activity. Compared with oxidation of LOX's preferred substrate, linoleic acid, the activity with NON was about 400- to 1000-fold less. Rather than obtaining the expected 4-HPNE, 4-oxo-2E-nonenal was the principal product of NON oxidation, presumably arising from the enzyme-generated alkoxyl radical of 4-HPNE. In further work a precipitous drop in activity was noted upon dilution of LOX-1 concentration; however, activity could be enhanced by spiking the reaction with 13S-hydroperoxy-9Z,11E-octadecadienoic acid. Under these conditions the principal product of NON oxidation shifted to the expected 4-HPNE. 4-HPNE was demonstrated to be 83% of the 4S-hydroperoxy-stereoisomer. Therefore, LOX-1 is also a 3Z-alkenal oxygenase, and it exerts the same stereospecificity of oxidation as it does with polyunsaturated fatty acids. Two other LOX isozymes of soybean seed were also found to oxidize NON to 4-HPNE with an excess of 4S-hydroperoxy-stereoisomer.