10 resultados para ionization probabilities
em National Center for Biotechnology Information - NCBI
Resumo:
An approach to analyzing single-nucleotide polymorphisms (SNPs) found in the human genome has been developed that couples a recently developed invasive cleavage assay for nucleic acids with detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The invasive cleavage assay is a signal amplification method that enables the analysis of SNPs by MALDI-TOF MS directly from human genomic DNA without the need for initial target amplification by PCR. The results presented here show the successful genotyping by this approach of twelve SNPs located randomly throughout the human genome. Conventional Sanger sequencing of these SNP positions confirmed the accuracy of the MALDI-TOF MS analysis results. The ability to unambiguously detect both homozygous and heterozygous genotypes is clearly demonstrated. The elimination of the need for target amplification by PCR, combined with the inherently rapid and accurate nature of detection by MALDI-TOF MS, gives this approach unique and significant advantages in the high-throughput genotyping of large numbers of SNPs, useful for locating, identifying, and characterizing the function of specific genes.
Resumo:
The larger of two diuretic hormones of the tobacco hornworm, Manduca sexta, (Mas-DH) is a peptide of 41 residues. It is one of a family of seven currently known insect diuretic hormones that are similar to the corticotropin-releasing factor–urotensin–sauvagine family of peptides. We investigated the possible inactivation of Mas-DH by incubating it in vitro with larval Malpighian tubules (Mt), the target organ of the hormone. The medium was analyzed, and degradation products were identified, using on-line microbore reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry (RPLC-ESI-MS). This sensitive technique allows identification of metabolites of Mas-DH (present at an initial level of ≈1 μM). An accurate Mr value for a metabolite is usually sufficient for unambiguous identification. Mas-DH is cleaved by Mt proteases initially at L29–R30 and R30–A31 under our assay conditions; some Mas-DH is also oxidized, apparently at M2 and M11. The proteolysis can be inhibited by 5 mM EDTA, suggesting that divalent metals are needed for peptide cleavage. The oxidation of the hormone can be inhibited by catalase or 1 mM methionine, indicating that H2O2 or related reactive oxygen species are responsible for the oxidative degradation observed. RPLC-ESI-MS is shown here to be an elegant and efficient method for studying peptide hormone metabolism resulting from unknown proteases and pathways.
Resumo:
Since the advent of matrix-assisted laser desorption/ionization and electrospray ionization, mass spectrometry has played an increasingly important role in protein functional characterization, identification, and structural analysis. Expanding this role, desorption/ionization on silicon (DIOS) is a new approach that allows for the analysis of proteins and related small molecules. Despite the absence of matrix, DIOS-MS yields little or no fragmentation and is relatively tolerant of moderate amounts of contaminants commonly found in biological samples. Here, functional assays were performed on an esterase, a glycosidase, a lipase, as well as exo- and endoproteases by using enzyme-specific substrates. Enzyme activity also was monitored in the presence of inhibitors, successfully demonstrating the ability of DIOS to be used as an inhibitor screen. Because DIOS is a matrix-free desorption technique, it also can be used as a platform for multiple analyses to be performed on the same protein. This unique advantage was demonstrated with acetylcholine esterase for qualitative and quantitative characterization and also by its subsequent identification directly from the DIOS platform.
Resumo:
Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.
Resumo:
Plasma levels of corticosterone are often used as a measure of “stress” in wild animal populations. However, we lack conclusive evidence that different stress levels reflect different survival probabilities between populations. Galápagos marine iguanas offer an ideal test case because island populations are affected differently by recurring El Niño famine events, and population-level survival can be quantified by counting iguanas locally. We surveyed corticosterone levels in six populations during the 1998 El Niño famine and the 1999 La Niña feast period. Iguanas had higher baseline and handling stress-induced corticosterone concentrations during famine than feast conditions. Corticosterone levels differed between islands and predicted survival through an El Niño period. However, among individuals, baseline corticosterone was only elevated when body condition dropped below a critical threshold. Thus, the population-level corticosterone response was variable but nevertheless predicted overall population health. Our results lend support to the use of corticosterone as a rapid quantitative predictor of survival in wild animal populations.
Resumo:
Electrospray ionization time-of-flight (ESI-TOF) mass spectrometry was used to study the quaternary structure of 4-oxalocrotonate tautomerase (EC 5.3.2; 4OT), and four analogues prepared by total chemical synthesis. Wild-type 4OT is a hexamer of 62 amino acid subunits and contains no cysteine residues. The analogues were: (desPro1)4OT, a truncated construct in which Pro1 was deleted; (Cpc1)4OT in which Pro1 was replaced with cyclopentane carboxylate; a derivative [Met(O)45]4OT in which Met45 was oxidized to the sulfoxide; and an analogue (Nle45)4OT in which Met45 was replaced with norleucine. ESI of (Nle45)4OT, (Cpc1)4OT, and 4OT from solution conditions under which the native enzyme was fully active (5 mM ammonium bicarbonate buffer, pH 7.5) gave the intact hexamer as the major species detected by TOF mass spectrometry. In contrast, analysis of [Met(O)45]4OT and (desPro1)4OT under similar conditions yielded predominantly monomer ions. The ESI-TOF measurements were consistent with structural data obtained from circular dichroism spectroscopy. In the context of kinetic data collected for 4OT and these analogues, ESI-TOF mass spectrometry also provided important evidence for the structural and mechanistic significance of the catalytically important Pro1 residue in 4OT.
Resumo:
Lasers emitting in the ultraviolet wavelength range of 260-360 nm are almost exclusively used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of macromolecules. Reports about the use of lasers emitting in the infrared first appeared in 1990/1991. In contrast to MALDI in the ultraviolet, a very limited number of reports on IR-MALDI have since been published. Several matrices have been identified for infrared MALDI yielding spectra of a quality comparable to those obtained in the ultraviolet. Water (ice) was recognized early as a potential matrix because of its strong O-H stretching mode near 3 microm. Interest in water as matrix derives primarily from the fact that it is the major constituent of most biological tissues. If functional as matrix, it might allow the in situ analysis of macromolecular constituents in frozen cell sections without extraction or exchanging the water. We present results that show that IR-MALDI of lyophilized proteins, air dried protein solutions, or protein crystals up to a molecular mass of 30 kDa is possible without the addition of any separate matrix. Samples must be frozen to retain a sufficient fraction of the water of hydration in the vacuum. The limited current sensitivity, requiring at least 10 pmol of protein for a successful analysis needs to be further improved.
Resumo:
By means of capillary electrophoresis coupled online to electrospray ionization MS, a library of theoretically 171 disubstituted xanthene derivatives was analyzed. The method allowed the purity and makeup of the library to be determined: 160 of the expected compounds were found to be present, and 12 side-products were also detected in the mixture. Due to the ability of capillary electrophoresis to separate analytes on the basis of charge, most of the xanthene derivatives could be resolved by simple capillary electrophoresis-MS procedures even though 124 of the 171 theoretical compounds were isobaric with at least one other molecule in the mixture. Any remaining unresolved peaks were resolved by MS/MS experiments. The method shows promise for the analysis of small combinatorial libraries with fewer than 1000 components.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) time of flight mass spectrometry was used to detect and order DNA fragments generated by Sanger dideoxy cycle sequencing. This was accomplished by improving the sensitivity and resolution of the MALDI method using a delayed ion extraction technique (DE-MALDI). The cycle sequencing chemistry was optimized to produce as much as 100 fmol of each specific dideoxy terminated fragment, generated from extension of a 13-base primer annealed on 40- and 50-base templates. Analysis of the resultant sequencing mixture by DE-MALDI identified the appropriate termination products. The technique provides a new non-gel-based method to sequence DNA which may ultimately have considerable speed advantages over traditional methodologies.
Resumo:
Li and Chakravarti [Li, C.C. & Chakravarti, A. (1994) Hum. Hered. 44, 100-109] compared the probability (MO) of a random match between the two DNA profiles of a pair of individuals drawn from a random-mating population to the probability (MF) of the match between a pair of random individuals drawn from a subdivided population. The level of heterogeneity in this subdivided population is measured by the parameter F, where there is no subdivision when F = 0 and increasing values of F indicate increasing subdivisions. Li and Chakravarti concluded that it is conservative to use the match probability MO, which is derived under the assumption that the two individuals are drawn from a homogeneous random-mating population without subdivision. However, MO may not be always greater than MF, even for biologically reasonable values of F. We explore here those mathematical conditions under which MO is less than MF, and we find that MO is not conservative mainly when there is an allele with a much higher frequency than all the other alleles. When empirical data for both variable number of tandem repeat (VNTR) and short tandem repeat (STR) systems are evaluated, we find that in the majority of cases MO represents a conservative probability of a match, and so the subdivision of human populations may usually be ignored for a random match, although not, of course, for relatives. Loci for which MO is not conservative should be avoided for forensic inference.